Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361042

RESUMO

Various neurodegenerative disorders are associated with human NTE/PNPLA6 dysfunction. Mechanisms of neuropathogenesis in these diseases are far from clearly elucidated. Hereditary spastic paraplegia belongs to a type of neurodegeneration associated with NTE/PNLPLA6 and is implicated in neuron death. In this study, we used Drosophila melanogaster to investigate the consequences of neuronal knockdown of swiss cheese (sws)-the evolutionarily conserved ortholog of human NTE/PNPLA6-in vivo. Adult flies with the knockdown show longevity decline, locomotor and memory deficits, severe neurodegeneration progression in the brain, reactive oxygen species level acceleration, mitochondria abnormalities and lipid droplet accumulation. Our results suggest that SWS/NTE/PNPLA6 dysfunction in neurons induces oxidative stress and lipid metabolism alterations, involving mitochondria dynamics and lipid droplet turnover in neurodegeneration pathogenesis. We propose that there is a complex mechanism in neurological diseases such as hereditary spastic paraplegia, which includes a stress reaction, engaging mitochondria, lipid droplets and endoplasmic reticulum interplay.


Assuntos
Encéfalo/metabolismo , Proteínas de Drosophila/metabolismo , Gotículas Lipídicas/metabolismo , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Encéfalo/citologia , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster , Metabolismo dos Lipídeos , Mitocôndrias/ultraestrutura , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Estresse Oxidativo
2.
Insects ; 13(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35055857

RESUMO

Drosophila melanogaster is one of the most famous insects in biological research. It is widely used to analyse functions of different genes. The phosphatidylcholine lysophospholipase gene swiss cheese was initially shown to be important in the fruit fly nervous system. However, the role of this gene in non-nervous cell types has not been elucidated yet, and the evolutional explanation for the conservation of its function remains elusive. In this study, we analyse expression pattern and some aspects of the role of the swiss cheese gene in the fitness of Drosophila melanogaster. We describe the spatiotemporal expression of swiss cheese throughout the fly development and analyse the survival and productivity of swiss cheese mutants. We found swiss cheese to be expressed in salivary glands, midgut, Malpighian tubes, adipocytes, and male reproductive system. Dysfunction of swiss cheese results in severe pupae and imago lethality and decline of fertility, which is impressive in males. The latter is accompanied with abnormalities of male locomotor activity and courtship behaviour, accumulation of lipid droplets in testis cyst cells and decrease in spermatozoa motility. These results suggest that normal swiss cheese is important for Drosophila melanogaster fitness due to its necessity for both specimen survival and their reproductive success.

3.
Cells ; 10(3)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801404

RESUMO

Glia are crucial for the normal development and functioning of the nervous system in many animals. Insects are widely used for studies of glia genetics and physiology. Drosophila melanogaster surface glia (perineurial and subperineurial) form a blood-brain barrier in the central nervous system and blood-nerve barrier in the peripheral nervous system. Under the subperineurial glia layer, in the cortical region of the central nervous system, cortex glia encapsulate neuronal cell bodies, whilst in the peripheral nervous system, wrapping glia ensheath axons of peripheral nerves. Here, we show that the expression of the evolutionarily conserved swiss cheese gene is important in several types of glia. swiss cheese knockdown in subperineurial glia leads to morphological abnormalities of these cells. We found that the number of subperineurial glia nuclei is reduced under swiss cheese knockdown, possibly due to apoptosis. In addition, the downregulation of swiss cheese in wrapping glia causes a loss of its integrity. We reveal transcriptome changes under swiss cheese knockdown in subperineurial glia and in cortex + wrapping glia and show that the downregulation of swiss cheese in these types of glia provokes reactive oxygen species acceleration. These results are accompanied by a decline in animal mobility measured by the negative geotaxis performance assay.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/fisiologia , Animais , Espécies Reativas de Oxigênio
4.
Mech Ageing Dev ; 181: 29-41, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31158363

RESUMO

Understanding the molecular mechanisms underlying variation in lifespan is central to ensure long life. Lim3 encoding a homolog of the vertebrate Lhx3/4 transcription factors plays a key role in Drosophila neuron development. Here, we demonstrated that Lim3 knockdown early in life decreased survival of adult flies. To study the mechanisms underlying this effect, we identified embryonic Lim3 targets using combined RNA-seq and RT-qPCR analyses complemented by in silico analysis of Lim3 binding sites. Though genes with neuronal functions were revealed as Lim3 targets, the characteristics of neurons were not affected by Lim3 depletion. Many of the direct and indirect Lim3 target genes were associated with mitochondrial function, ATP-related activity, redox processes and antioxidant defense. Consistent with the observed changes in the embryonic transcription of these genes, ROS levels were increased in embryos, which could cause changes in the transcription of indirect Lim3 targets known to affect lifespan. We hypothesize that altered mitochondrial activity is crucial for the decrease of adult lifespan caused by Lim3 knockdown early in life. In adults that encountered Lim3 depletion early in life, the transcription of several genes remained altered, and mitochondrial membrane potential, ATP level and locomotion were increased, confirming the existence of carry-over effects.


Assuntos
Proteínas de Drosophila/deficiência , Técnicas de Silenciamento de Genes , Proteínas com Homeodomínio LIM/deficiência , Longevidade , Mitocôndrias/metabolismo , Fatores de Transcrição/deficiência , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas com Homeodomínio LIM/metabolismo , Larva/genética , Larva/metabolismo , Mitocôndrias/genética , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA