Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 139(32): 11165-11183, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28704044

RESUMO

We report a combined synthetic, mechanistic, and theoretical study of the first borylimido complex of a rare earth metal, (NacNacNMe2)Sc{NB(NAr'CH)2} (25, Ar' = 2,6-C6H3iPr2, NacNacNMe2 = Ar'NC(Me)CHC(Me)NCH2CH2NMe2). Thermolysis of the methyl-borylamide (NacNacNMe2)Sc(Me){NHB(NAr'CH)2} (18) generated transient imide 25 via rate-determining, first-order methane elimination (KIE ≈ 8.7). In the absence of external substrate, 25 underwent a reversible cyclometalation reaction (sp3 C-H bond addition to Sc═Nimide) with a methyl group of the NacNacNMe2 ligand forming {MeC(NC6H3iPrCH(Me)CH2)CHC(Me)NCH2CH2NMe2}Sc{NHB(NAr'CH)2} (21). In the presence of pyridine or DMAP, reversible sp2 C-H bond activation occurred, forming orthometalated complexes (NacNacNMe2)Sc{NHB(NAr'CH)2}(η2-4-NC5H3R) (R = H or NMe2). In situ reaction of 25 with HCCTol gives irreversible sp C-H bond activation under kinetic control, and with MeCCPh [2+2] cycloaddition to Sc═Nimide takes place. These reactions represent the first substrate activation processes for any metal-bound borylimide. The bonding in 25 and the mechanism and thermodynamics of the reactions have been studied using density functional theory (DFT), supported by quantum theory of atoms in molecules and natural bond orbital analysis. Although the borylimido and arylimido dianions studied here are formally isoelectronic and possess comparable frontier molecular orbitals, the borylimido ligand is both a better π-donor and σ-donor, forming stronger and shorter metal-nitrogen bonds with somewhat reduced ionicity. Despite this, reactions of these types of borylimides with C-H or C≡C bonds are all more exothermic and more strongly activating than for the corresponding arylimides. DFT calculations on model systems of differing steric bulk unpicked the underlying thermodynamic factors controlling the reactions of 25 and its reaction partners, and a detailed comparison was made with the previously described arylimido homologues.

2.
Inorg Chem ; 56(17): 10794-10814, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28836774

RESUMO

We report a combined experimental and computational study of the synthesis and electronic structure of titanium borylimido compounds. Three new synthetic routes to this hitherto almost unknown class of Group 4 imide are presented. The double-deprotonation reaction of the borylamine H2NB(NAr'CH)2 (Ar' = 2,6-C6H3iPr2) with Ti(NMe2)2Cl2 gave Ti{NB(NAr'CH)2}Cl2(NHMe2)2, which was easily converted to Ti{NB(NAr'CH)2}Cl2(py)3. This compound is an entry point to other borylimides, for example, reacting with Li2N2pyrNMe to form Ti(N2pyrNMe){NB(NAr'CH)2}(py)2 and with 2 equiv of NaCp to give Cp2Ti{NB(NAr'CH)2}(py) (23). Borylamine-tert-butylimide exchange between H2NB(NAr'CH)2 and Cp*Ti(NtBu)Cl(py) under forcing conditions afforded Cp*Ti{NB(NAr'CH)2}Cl(py), which could be further substituted with guanidinate or pyrrolide-amine ligands to give Cp*Ti(hpp){NB(NAr'CH)2} (16) and Cp*Ti(NpyrNMe2){NB(NAr'CH)2} (17). The Ti-Nim distances in compounds with the NB(NAr'CH)2 ligand were comparable to those of the corresponding arylimides. Dialkyl- or diaryl-substituted borylamines do not undergo the analogous double-deprotonation or imide-amine exchange reactions. Reaction of (Cp″2Ti)2(µ2:η1,η1-N2) with N3BMes2 gave the base-free, diarylborylimide Cp″2Ti(NBMes2) (26) by an oxidative route; this compound has a relatively long Ti-Nim bond and large Cp″-Ti-Cp″ angle. Reaction of 16 with H2NtBu formed equilibrium mixtures with H2NB(NAr'CH)2 and Cp*Ti(hpp)(NtBu) (ΔrG = -1.0 kcal mol-1). In contrast, the dialkylborylimide Cp*Ti{MeC(NiPr)2}(NBC8H14) (2) reacted quantitatively with H2NtBu to give the corresponding tert-butylimide and borylamine. The electronic structures and imide-amine exchange reactions of half-sandwich and sandwich titanium borylimides have been evaluated using density functional theory (DFT), supported by quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analysis, and placed more generally in context with the well-established alkyl- and arylimides and hydrazides. The calculations find that Ti-Nim bonds for borylimides are stronger and more covalent than in their organoimido or hydrazido analogues, and are strongest for alkyl- and arylborylimides. Borylamine-tert-butylimide exchange reactions fail for H2NBR2 (R = hydrocarbyl) but not for H2NB(NAr'CH)2 because the increased strength of the new Ti-Nim bond for the former is outweighed by the increased net H-N bond strengths in the borylamine. Variation of the Ti-Nim bond length over short distances is dominated by π-interactions with any appropriate orbital on the Nim atom organic substituent. However, over the full range of imides and hydrazides studied, overall bond energies do not correlate with bond length but with the Ti-Nim σ-bond character and the orthogonal π-interaction.

3.
J Am Chem Soc ; 137(32): 10140-3, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26226513

RESUMO

Reaction of Ti(N2(iPr)N)(NNPh2)(py) with Ph(R)SiH2 (R = H, Ph) or 9-BBN gave reductive cleavage of the N(α)-N(ß) bond and formation of new silyl- or boryl-amido ligands. The corresponding reactions of Cp*Ti{MeC(N(i)Pr)2}(NNR2) (R = Me or Ph) with HBPin or 9-BBN gave borylhydrazido-hydride or borylimido products, respectively. N(α) and N(ß) atom transfer and dehydrogenative coupling reactions are also reported.

4.
EPMA J ; 13(2): 299-313, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35719134

RESUMO

Digital biomarkers are defined as objective, quantifiable physiological and behavioral data that are collected and measured by means of digital devices. Their use has revolutionized clinical research by enabling high-frequency, longitudinal, and sensitive measurements. In the field of neurodegenerative diseases, an example of a digital biomarker-based technology is instrumental activities of daily living (iADL) digital medical application, a predictive biomarker of conversion from mild cognitive impairment (MCI) due to Alzheimer's disease (AD) to dementia due to AD in individuals aged 55 + . Digital biomarkers show promise to transform clinical practice. Nevertheless, their use may be affected by variables such as demographics, genetics, and phenotype. Among these factors, sex is particularly important in Alzheimer's, where men and women present with different symptoms and progression patterns that impact diagnosis. In this study, we explore sex differences in Altoida's digital medical application in a sample of 568 subjects consisting of a clinical dataset (MCI and dementia due to AD) and a healthy population. We found that a biological sex-classifier, built on digital biomarker features captured using Altoida's application, achieved a 75% ROC-AUC (receiver operating characteristic - area under curve) performance in predicting biological sex in healthy individuals, indicating significant differences in neurocognitive performance signatures between males and females. The performance dropped when we applied this classifier to more advanced stages on the AD continuum, including MCI and dementia, suggesting that sex differences might be disease-stage dependent. Our results indicate that neurocognitive performance signatures built on data from digital biomarker features are different between men and women. These results stress the need to integrate traditional approaches to dementia research with digital biomarker technologies and personalized medicine perspectives to achieve more precise predictive diagnostics, targeted prevention, and customized treatment of cognitive decline. Supplementary Information: The online version contains supplementary material available at 10.1007/s13167-022-00284-3.

5.
NPJ Digit Med ; 3: 81, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32529043

RESUMO

Precision Medicine implies a deep understanding of inter-individual differences in health and disease that are due to genetic and environmental factors. To acquire such understanding there is a need for the implementation of different types of technologies based on artificial intelligence (AI) that enable the identification of biomedically relevant patterns, facilitating progress towards individually tailored preventative and therapeutic interventions. Despite the significant scientific advances achieved so far, most of the currently used biomedical AI technologies do not account for bias detection. Furthermore, the design of the majority of algorithms ignore the sex and gender dimension and its contribution to health and disease differences among individuals. Failure in accounting for these differences will generate sub-optimal results and produce mistakes as well as discriminatory outcomes. In this review we examine the current sex and gender gaps in a subset of biomedical technologies used in relation to Precision Medicine. In addition, we provide recommendations to optimize their utilization to improve the global health and disease landscape and decrease inequalities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA