Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Ther ; 32(5): 1373-1386, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38504517

RESUMO

Epidemiological studies show that individuals who carry the relatively uncommon APOE ε2 allele rarely develop Alzheimer disease, and if they do, they have a later age of onset, milder clinical course, and less severe neuropathological findings than people without this allele. The contrast is especially stark when compared with the major genetic risk factor for Alzheimer disease, APOE ε4, which has an age of onset several decades earlier, a more aggressive clinical course and more severe neuropathological findings, especially in terms of the amount of amyloid deposition. Here, we demonstrate that brain exposure to APOE ε2 via a gene therapy approach, which bathes the entire cortical mantle in the gene product after transduction of the ependyma, reduces Aß plaque deposition, neurodegenerative synaptic loss, and, remarkably, reduces microglial activation in an APP/PS1 mouse model despite continued expression of human APOE ε4. This result suggests a promising protective effect of exogenous APOE ε2 and reveals a cell nonautonomous effect of the protein on microglial activation, which we show is similar to plaque-associated microglia in the brain of Alzheimer disease patients who inherit APOE ε2. These data increase the potential that an APOE ε2 therapeutic could be effective in Alzheimer disease, even in individuals born with the risky ε4 allele.


Assuntos
Doença de Alzheimer , Apolipoproteína E2 , Modelos Animais de Doenças , Terapia Genética , Camundongos Transgênicos , Microglia , Placa Amiloide , Animais , Doença de Alzheimer/terapia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/etiologia , Camundongos , Terapia Genética/métodos , Humanos , Apolipoproteína E2/genética , Apolipoproteína E2/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Microglia/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/terapia , Doenças Neuroinflamatórias/metabolismo , Peptídeos beta-Amiloides/metabolismo , Biomarcadores
2.
Brain ; 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37633260

RESUMO

Huntington's disease (HD) results from expansion of a polyglutamine tract (polyQ) in mutant huntingtin (mHTT) protein, but mechanisms underlying polyQ expansion-mediated toxic gain-of-mHTT function remain elusive. Here, deletion and antibody-based experiments revealed that a proline-rich domain (PRD) adjacent to the polyQ tract is necessary for mutant huntingtin (mHTT) to inhibit fast axonal transport and promote axonal pathology in cultured mammalian neurons. Further, polypeptides corresponding to subregions of the PRD sufficed to elicit the toxic effect on fast axonal transport, which was mediated by JNK kinases and involved PRD binding to one or more SH3-domain containing proteins. Collectively, these data suggested a mechanism whereby polyQ tract expansion in mHTT promotes aberrant PRD exposure and interactions of this domain with SH3 domain-containing proteins including some involved in activation of JNK kinases. In support, biochemical and immunohistochemical experiments linked aberrant PRD exposure to increased JNK activation in striatal tissues of the zQ175 mouse model and from post-mortem HD patients. Collectively, these findings support a critical role of PRD on mHTT toxicity, suggesting a novel framework for the potential development of therapies aimed to halt or reduce axonal pathology in HD.

3.
Front Neurosci ; 17: 1184049, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37502683

RESUMO

The central nervous system (CNS) was previously thought to lack lymphatics and shielded from the free diffusion of molecular and cellular components by the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCB). However, recent findings have redefined the roles played by meningeal lymphatic vessels in the recruitment and drainage of lymphocytes from the periphery into the brain and the potentiation of an immune response. Emerging knowledge surrounding the importance of meningeal lymphatics has the potential to transform the treatment of CNS disorders. This review details the most recent understanding of the CNS-lymphatic network and its immunologic implications in both the healthy and diseased brain. Moreover, the review provides in-depth coverage of several exciting avenues for future therapeutic treatments that involve the meningeal lymphatic system. These therapeutic avenues will have potential implications in many treatment paradigms in the coming years.

4.
bioRxiv ; 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37645718

RESUMO

Epidemiological studies show that individuals who carry the relatively uncommon APOE ε2 allele rarely develop Alzheimer disease, and if they do they have a later age of onset, milder clinical course, and less severe neuropathological findings than others with Alzheimer disease. The contrast is especially stark in comparison to the phenotype associated with the major genetic risk factor for Alzheimer disease, APOE ε4, which has an age of onset several decades earlier, as well as a more aggressive clinical course and notably more severe neuropathological findings, especially in terms of the amount of amyloid deposition. Even one APOE ε2 allele improves phenotype, but it is uncertain if that is due to the replacement of a more toxic allele by APOE ε2, or if APOE ε2 has a protective, neuro-modulatory effect. Here, we demonstrate that brain exposure to APOE2 via a gene therapy approach which bathes the entire cortical mantle in the gene product after transduction of the ependyma, rapidly ameliorates established Aß plaque deposition, neurodegenerative synaptic loss, and, remarkably, reduces microglial activation in an APP/PS1 mouse model despite continued expression of human APOE4. This result suggests a promising protective effect of exogenous APOE2, revealing a cell non-autonomous effect of the protein on microglial activation. We also show that plaque associated microglia in the brain of patients who inherit APOE2 similarly have less microglial reactivity to plaques. These data raise the potential that an APOE2 therapeutic could be effective in Alzheimer disease even in individuals born with the risk ε4 allele. One Sentence Summary: Introduction of ApoE2 using an AAV that transduces the ependymal cells of the ventricle causes a reduction in amyloid load and plaque associated synapse loss, and reduces neuroinflammation by modulating microglial responsiveness to plaques.

5.
JAMA Neurol ; 80(11): 1209-1221, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37812432

RESUMO

Importance: Factors associated with synapse loss beyond amyloid-ß plaques and neurofibrillary tangles may more closely correlate with the emergence of cognitive deficits in Alzheimer disease (AD) and be relevant for early therapeutic intervention. Objective: To investigate whether accumulation of tau oligomers in synapses is associated with excessive synapse elimination by microglia or astrocytes and with cognitive outcomes (dementia vs no dementia [hereinafter termed resilient]) of individuals with equal burdens of AD neuropathologic changes at autopsy. Design, Setting, and Participants: This cross-sectional postmortem study included 40 human brains from the Massachusetts Alzheimer Disease Research Center Brain Bank with Braak III to IV stages of tau pathology but divergent antemortem cognition (dementia vs resilient) and cognitively normal controls with negligible AD neuropathologic changes. The visual cortex, a region without tau tangle deposition at Braak III to IV stages, was assessed after expansion microscopy to analyze spatial relationships of synapses with microglia and astrocytes. Participants were matched for age, sex, and apolipoprotein E status. Evidence of Lewy bodies, TDP-43 aggregates, or other lesions different from AD neuropathology were exclusion criteria. Tissue was collected from July 1998 to November 2020, and analyses were conducted from February 1, 2022, through May 31, 2023. Main Outcomes and Measures: Amyloid-ß plaques, tau neuropil thread burden, synapse density, tau oligomers in synapses, and internalization of tau oligomer-tagged synapses by microglia and astrocytes were quantitated. Analyses were performed using 1-way analysis of variance for parametric variables and the Kruskal-Wallis test for nonparametric variables; between-group differences were evaluated with Holm-Sídák tests. Results: Of 40 included participants (mean [SD] age at death, 88 [8] years; 21 [52%] male), 19 had early-stage dementia with Braak stages III to IV, 13 had resilient brains with similar Braak stages III to IV, and 8 had no dementia (Braak stages 0-II). Brains with dementia but not resilient brains had substantial loss of presynaptic (43%), postsynaptic (33%), and colocalized mature synaptic elements (38%) compared with controls and significantly higher percentages of mature synapses internalized by IBA1-positive microglia (mean [SD], 13.3% [3.9%] in dementia vs 2.6% [1.9%] in resilient vs 0.9% [0.5%] in control; P < .001) and by GFAP-positive astrocytes (mean [SD], 17.2% [10.9%] in dementia vs 3.7% [4.0%] in resilient vs 2.7% [1.8%] in control; P = .001). In brains with dementia but not in resilient brains, tau oligomers more often colocalized with synapses, and the proportions of tau oligomer-containing synapses inside microglia (mean [SD] for presynapses, mean [SD], 7.4% [1.8%] in dementia vs 5.1% [1.9%] resilient vs 3.7% [0.8%] control; P = .006; and for postsynapses 11.6% [3.6%] dementia vs 6.8% [1.3%] resilient vs 7.4% [2.5%] control; P = .001) and astrocytes (mean [SD] for presynapses, 7.0% [2.1%] dementia vs 4.3% [2.2%] resilient vs 4.0% [0.7%] control; P = .001; and for postsynapses, 7.9% [2.2%] dementia vs 5.3% [1.8%] resilient vs 3.0% [1.5%] control; P < .001) were significantly increased compared with controls. Those changes in brains with dementia occurred in the absence of tau tangle deposition in visual cortex. Conclusion and Relevance: The findings from this cross-sectional study suggest that microglia and astrocytes may excessively engulf synapses in brains of individuals with dementia and that the abnormal presence of tau oligomers in synapses may serve as signals for increased glial-mediated synapse elimination and early loss of brain function in AD.


Assuntos
Doença de Alzheimer , Humanos , Masculino , Criança , Feminino , Doença de Alzheimer/patologia , Estudos Transversais , Astrócitos/patologia , Microglia/patologia , Neuroglia/patologia , Peptídeos beta-Amiloides , Sinapses/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA