RESUMO
The nodule autoregulation receptor kinase (GmNARK) of soybean (Glycine max) is essential for the systemic autoregulation of nodulation. Based on quantitative reverse-transcriptase polymerase chain reaction, GmNARK is ex-pressed to varying levels throughout the plant; the transcript was detected at high levels in mature leaves and roots but to a lesser extent in young leaves, shoot tips, and nodules. The transcript level was not significantly affected by Bradyrhizobium japonicum during the first week following inoculation. In addition, the activities of the promoters of GmNARK and Lotus japonicus HARI, driving a beta-glucuronidase (GUSPlus) reporter gene, were examined in stably transformed L. japonicus and transgenic hairy roots of soybean. Histochemical GUS activity in L. japonicus plants carrying either a 1.7-kb GmNARKpr::GUS or 2.0-kb LjHAR1pr::GUS construct was clearly localized to living cells within vascular bundles, especially phloem cells in leaves, stems, roots, and nodules. Phloem-specific expression also was detected in soybean hairy roots carrying these constructs. Our study suggests that regulatory elements required for the transcription of these orthologous genes are conserved. Moreover, rapid amplification of 5' cDNA ends (5' rapid amplification of cDNA ends) revealed two major transcripts of GmNARK potentially originating from two TATA boxes. Further analysis of the GmNARK promoter has confirmed that these two TATA boxes are functional. Deletion analysis also located a region controlling phloem-specific expression to a DNA sequence between 908 bp and 1.7 kb upstream of the translation start site of GmNARK.
Assuntos
Lotus/genética , Floema/genética , Regiões Promotoras Genéticas/genética , Nódulos Radiculares de Plantas/genética , Sequência de Bases , Bradyrhizobium/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Glucuronidase/genética , Glucuronidase/metabolismo , Lotus/metabolismo , Lotus/microbiologia , Dados de Sequência Molecular , Floema/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Brotos de Planta/genética , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Glycine max/genética , Glycine max/metabolismo , Glycine max/microbiologia , Transcrição GênicaRESUMO
Detection of very small amounts of RNA based on microdissection of plant tissue is essential for modern plant biology. Mass spectroscopy technology (MassARRAY) based on Sequenomtrade mark instrumentation was adapted to determine quickly and in a high-throughput fashion (by multiplexing) the absolute amounts of mRNA of closely related soybean genes. A sensitivity of 0.1 amol (10(-19)) was achieved, representing as few as 1,000 mRNA molecules. This methodology eliminates the use of housekeeping genes as reference standards and has multiple applications for plant functional genomics, such as the monitoring of individual expression of paralogous genes at ultra-low expression levels and/or in extremely small tissue samples.
Assuntos
Perfilação da Expressão Gênica/métodos , Glycine max/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA Mensageiro/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Genes de Plantas , Reação em Cadeia da Polimerase/métodos , RNA de Plantas/análise , Sensibilidade e EspecificidadeRESUMO
Proliferation of legume nodule primordia is controlled by shoot-root signaling known as autoregulation of nodulation (AON). Mutants defective in AON show supernodulation and increased numbers of lateral roots. Here, we demonstrate that AON in soybean is controlled by the receptor-like protein kinase GmNARK (Glycine max nodule autoregulation receptor kinase), similar to Arabidopsis CLAVATA1 (CLV1). Whereas CLV1 functions in a protein complex controlling stem cell proliferation by short-distance signaling in shoot apices, GmNARK expression in the leaf has a major role in long-distance communication with nodule and lateral root primordia.