Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(6)2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36991957

RESUMO

Azimuthal acoustic logging can survey the downhole formation more accurately, and the acoustic source is the crucial component of the downhole acoustic logging tool with azimuthal resolution characteristics. To realize downhole azimuthal detection, assembling multiple transmitting piezoelectric vibrators in the circumferential direction is necessary, and the performance of azimuthal-transmitting piezoelectric vibrators needs attention. However, effective heating test and matching methods are not yet developed for downhole multi-azimuth transmitting transducers. Therefore, this paper proposes an experimental method to comprehensively evaluate downhole azimuthal transmitters; furthermore, we analyze the azimuthal-transmitting piezoelectric vibrator parameters. This paper presents a heating test apparatus and studies the admittance and driving responses of the vibrator at different temperatures. The transmitting piezoelectric vibrators showing a good consistency in the heating test were selected, and an underwater acoustic experiment was performed. The main lobe angle of the radiation beam, horizontal directivity, and radiation energy of the azimuthal vibrators and azimuthal subarray are measured. The peak-to-peak amplitude radiated from the azimuthal vibrator and the static capacitance increase with an increase in temperature. The resonant frequency first increases and then decreases slightly with an increase in temperature. After cooling to room temperature, the parameters of the vibrator are consistent with those before heating. Hence, this experimental study can provide a foundation for the design and matching selection of azimuthal-transmitting piezoelectric vibrators.

2.
Sensors (Basel) ; 23(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37112269

RESUMO

Acoustic logging instruments generate high voltages in the order of thousands of volts. Electrical interferences are thus induced by high-voltage pulses that affect the logging tool and make it inoperable owing to damaged components in severe cases. High-voltage pulses from the acoustoelectric logging detector interfere with the electrode measurement loop through capacitive coupling, which has seriously affected the acoustoelectric signal measurements. In this paper, we simulate high voltage pulses, capacitive coupling and electrode measurement loops based on qualitative analysis of the causes of electrical interference. Based on the structure of the acoustoelectric logging detector and the logging environment, an electrical interference simulation and prediction model was developed to quantify the characteristics of the electrical interference signal.

3.
Sensors (Basel) ; 21(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34960587

RESUMO

To increase the accuracy of reservoir evaluation, a new type of seismoelectric logging instrument was designed. The designed tool comprises the invented sonde-structured array complex. The tool includes several modules, including a signal excitation module, data acquisition module, phased array transmitting module, impedance matching module and a main system control circuit, which are interconnected through high-speed tool bus to form a distributed architecture. UC/OS-II was used for the real-time system control. After constructing the experimental measurement system prototype of the seismoelectric logging detector, its performance was verified in the laboratory. The obtained results showed that the consistency between the multi-channel received waveform amplitude and benchmark spectrum was more than 97%. The binary phased linear array transmitting module of the instrument can realize 0° to 20° deflection and directional radiation. In the end, a field test was conducted to verify the tool's performance in downhole conditions. The results of this test proved the effectiveness of the developed seismoelectric logging tool.


Assuntos
Impedância Elétrica
4.
Sensors (Basel) ; 19(15)2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31349614

RESUMO

To improve the performance of acoustic logging tool in detecting three-dimensional formation, larger and more complicated transducer arrays have been used, which will greatly increase the difficulty of fault diagnosis during tool assembly and maintenance. As a result, traditional passive diagnostic methods become inefficient, and very skilled assemblers and maintainers are required. In this study, fault-diagnosis requirement for the acoustic logging tool at different levels has been analyzed from the perspective of the tool designer. An intelligent fault-diagnosis system consisting of a master-slave hardware architecture and a systemic diagnosis strategy was developed. The hardware system is based on the embedded technology, while the diagnosis strategy is built upon fault-tree analysis and data-driven methods. Diagnostic practice shows that this intelligent system can achieve four levels of fault diagnosis for the acoustic logging tool: System, subsystem, circuit board, and component. This study provided a more rigorous and professional fault diagnosis during tool assembly and maintenance. It is expected that this proposed method would be of great help in achieving cost reduction and improving work efficiency.

5.
Sensors (Basel) ; 17(6)2017 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-28604603

RESUMO

A logging-while-drilling (LWD) caliper is a tool used for the real-time measurement of a borehole diameter in oil drilling engineering. This study introduces the mechanical structure and working principle of a new LWD caliper based on ultrasonic distance measurement (UDM). The detection range is a major performance index of a UDM system. This index is determined by the blind zone length and remote reflecting interface detection capability of the system. To reduce the blind zone length and detect near the reflecting interface, a full bridge acoustic emission technique based on bootstrap gate driver (BGD) and metal-oxide-semiconductor field effect transistor (MOSFET) is designed by analyzing the working principle and impedance characteristics of a given piezoelectric transducer. To detect the remote reflecting interface and reduce the dynamic range of the received echo signals, the relationships between the echo amplitude and propagation distance of ultrasonic waves are determined. A signal compensation technique based on time-varying amplification theory, which can automatically change the gain according to the echo arrival time is designed. Lastly, the aforementioned techniques and corresponding circuits are experimentally verified. Results show that the blind zone length in the UDM system of the LWD caliper is significantly reduced and the capability to detect the remote reflecting interface is considerably improved.

6.
J Magn Reson ; 315: 106735, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32408240

RESUMO

Inside-out nuclear magnetic resonance (NMR) is a unique technique for investigating large in-situ objects outside of tools, to provide pore structure and pore-bearing fluids properties. However, in borehole, objects towards azimuthal orientations pose different properties, referred to as azimuthal spatial heterogeneity. This may lead to ambiguous evaluations by utilizing present inside-out NMR measurement, which hardly resolves azimuthal information and loses the location information of oil/gas. In this paper, we for the first time design and construct an innovative tool to investigate the heterogeneity of large in-situ samples. The most key component, array coil, which performs with azimuthal selection, measurement consistency and interactive isolation, configured in this novel tool to capture heterogeneity information. Whereas, strong coupling between neighboring coil elements largely decrease the coil sensitivity. Capacitive decoupling network is bridged into adjacent ports without segmenting coils to be decoupled and could be easily adjusted by electrical relays. The coil model and numerical simulation are firstly given to demonstrate the array coil configuration, B1 field map and mutual coupling effects on coil sensitivity. Capacitive network is then introduced to be theoretically and practically analyzed to minimize coupling effects. Simulation and experimental results demonstrate that these coil elements have excellent consistency and independence to feasibly acquire the azimuthal NMR data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA