Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Phys Chem Chem Phys ; 25(6): 5021-5028, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36722878

RESUMO

Organic molecules have been intensively studied during the last few decades because of their photonics and biological applications. In this material class, the fluorene molecules present outstanding optical features, for example, high values of two-photon absorption (2PA) cross-sections, visible transparency, and high fluorescence quantum yield. Also, it is possible to improve the nonlinear optical response by modifying the fluorene molecular structure. In this context, herein, we have synthesized V and Y-shaped branching oligofluorenes containing two and three fluorene moieties in each branch. Such a molecular strategy may exponentially enhance the nonlinear optical response due to the coherent coupling among the molecular arms. Thus, we combined the use of femtosecond Z-scan spectroscopy and white light transient absorption spectroscopy (TAS) to understand the molecular structure and 2PA property relationship of branching oligofluorenes. The results show that there is a universal relationship between the 2PA cross-section and the effective π-electron number (Neff) given by σ2PA(GM) = (079 ± 0.03)Neff2, which is independent of the molecular shape (linear, V or Y-shaped). Therefore, the intramolecular charge transfer responsible for the cooperative effect among the branches does not occur. This statement is corroborated by the results of the femtosecond TAS technique.

2.
J Chem Phys ; 159(24)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38153155

RESUMO

The first-order molecular hyperpolarizability (ß) dispersion was measured in seven chalcone-based molecules utilizing the tunable femtosecond hyper-Rayleigh scattering (tHRS) technique. Additionally, a theoretical model based on photophysical parameters was employed to better understand ß dispersion. Due to the distinct substitution patterns of the aryl/heteroaryl rings within the chalcone structure, varying profiles of one- and two-photon absorption spectra and ß dispersion were observed. The applied model highlighted two important factors contributing to achieving high ß values: (i) the presence of red-shifted one-photon and two-photon absorption bands; and (ii) the number of discernible absorption bands. To contextualize these results with other molecular structures, we employed the HRS figure of merit (FOM). Remarkably, it was revealed that chemically engineered small chalcone molecules exhibit a FOM comparable to larger quadrupolar and octupolar ones. This underscores the significance of tHRS scattering measurements and their correlation with absorptive parameters in the design and characterization of nonlinear optical materials.

3.
J Chem Phys ; 158(21)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37260001

RESUMO

The application of nonlinear optical effects in optoelectronic devices is still scarce because the irradiance threshold necessary to induce a specific effect is very high. In this context, knowing the frequency-resolved first order molecular hyperpolarizability (ß) is essential to identifying regions where this response is intense enough to allow for applications in commercial devices. Thus, herein, we have determined the ß spectral dependence of five new push-pull cinnamylidene acetophenone derivatives using femtosecond laser-induced Hyper-Rayleigh Scattering (HRS). A considerable increase in ß values was observed in molecules. We found remarkable ß values in regions near the two-photon resonance, which are mediated by electron withdrawing and donating groups. This effect was mapped using wavelength-tunable femtosecond Z-scan technique. Furthermore, it was modeled in light of the sum-over-states approach for the second- and third-order nonlinearities. Finally, our outcomes suggest a strategy to obtain large ß values mediated by the 2PA transition.

4.
Phys Chem Chem Phys ; 25(1): 359-365, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36477139

RESUMO

Nanomaterials have been investigated as saturable absorbers for ultrafast lasers because of their large photoinduced transparency related to ground-state bleaching. However, the quantum dot size effect on the photoinduced transparency in the strong confinement regime has not been explored due to the challenge of accurately measuring the ground state and the excited-state absorption cross-sections. At the same time, these optical properties are essential to calculate several chemical and physical quantities at the nanoscale. In this context, we have employed the photoluminescence saturation method to determine the ground-state absorption cross-section and the femtosecond open-aperture Z-scan technique to investigate the size-dependent ground-state bleaching of glutathione-capped CdTe QDs synthesized in an aqueous medium. The results were modeled using rate equations within the three-energy levels approach. Our results pointed out that the photoinduced transparency rate at the 1S3/2(h) → 1S(e) transition peak presents an inverse linear relationship with the QD diameter (from 2.2 nm up to 3 nm). Otherwise, the larger QDs have a higher ground-state cross-section, which is directly proportional to the ground-state bleaching. To explain this apparent contradiction, we calculate the effective absorption coefficient αeff = σ/V (σ is the absorption cross section and V is the QD volume) for the QDs and observed that the smaller QDs have a higher absorption from the ground to the first excited state, corroborating our results. Finally, our results showed that the saturable absorption effect in CdTe-QDs is slightly higher than that obtained for graphene and other 2D materials and smaller than the black phosphorus in the visible region.

5.
J Phys Chem A ; 126(14): 2152-2159, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35363498

RESUMO

The search for optical materials, particularly organic compounds, is still an attractive and essential field for developing several photonic devices and applications. For example, some applications are based on light scattering with twice the energy of the incoming photon for selected compounds, that is, the nonlinear optical effect related to the second-order susceptibility term from the electronic polarization expression. The microscopic interpretation of this phenomenon is called the first-order molecular hyperpolarizability or incoherent second harmonic generation of light. Understanding such phenomena as a function of the incoming wavelength is crucial to improving the optical response of future materials. Still, the experimental apparatus, hyper-Rayleigh scattering, apparently simple, is indeed a challenging task. Therefore, we proposed a proper alternative to obtain the dispersion of the first-order hyperpolarizability using the well-known one- and two-photon absorption techniques. By the spectral analysis of both the spectra, we gathered spectroscopic parameters and applied them for predicting the first-order hyperpolarizability dispersion. This prediction is based on an n-level energy system, taking into account the position and magnitude of transition dipole moments and the difference between the permanent dipole moment of the n-excited states. Moreover, using the presented method, we can avoid underestimating the first-order hyperpolarizability by not suppressing higher-energy transitions. Quantum chemical calculations and the hyper-Rayleigh scattering technique were used to validate the proposed method.

6.
Phys Chem Chem Phys ; 23(34): 18602-18609, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34612397

RESUMO

Fluorene-based molecules exhibit significant nonlinear optical responses and multiphoton absorption in the visible region, which, combined with the high fluorescence quantum yield in organic solvents, could make this class of materials potentially engaging in diverse photonics applications. Thus, herein, we have determined the two-photon absorption (2PA) of oligofluorenes containing three, five, and seven repetitive units by employing the wavelength-tunable femtosecond Z-scan technique. Our outcomes have shown that the 2PA cross-section in oligofluorenes presents an enhanced value of around 18 GM per Neff, in which Neff is the effective number of π-electrons, for the pure 2PA allowed transition (11Ag-like → 21Ag-like). Furthermore, a weak 2PA transition was observed in the same spectral region strongly allowed by one-photon absorption (11Ag-like → 11Bu-like). This last result suggests a molecular symmetry perturbation, probably induced by the molecular disorder triggered by the increase of moieties in the oligofluorene structure. We have calculated the permanent dipole moment difference related to the lowest-energy transition using the Lippert-Matagaformalism and the 2PA sum-over-states approach to confirm this assumption. Moreover, we have estimated the fundamental limits for the 2PA cross-section in oligofluorenes.

7.
J Phys Chem A ; 125(1): 99-105, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33372791

RESUMO

The first-order hyperpolarizability of π-conjugated organic molecules is of particular interest for the fabrication of electro-optical modulators. Thus, we investigated the relationship between the molecular structure and the incoherent second-order nonlinear optical response (ßHRS) of four salicylidene derivatives (salophen, [Zn(salophen)(OH2)], 3,4-benzophen, [Zn(3,4-benzophen)(OH2)]) dissolved in DMSO. For that, we employed the Hyper-Rayleigh Scattering technique with picosecond pulse trains. Our experimental results pointed out dynamic ßHRS values between 32.0 ± 4.8 × 10-30 cm5/esu and 58.5 ± 8.0 × 10-30 cm5/esu at 1064 nm, depending on the molecular geometry of the salicylidene molecules. More specifically, the outcomes indicate a considerable increase of ßHRS magnitude (∼30%) when in the ligands are incorporated the Zn(II) ion. We ascribed such results to the rise of the planarity of the π-conjugated backbone of the chromophores caused by the Zn(II). Furthermore, we observed an increase of ∼50% in dynamic ßHRS when there is a replacement of one hydrogen atom (salophen molecule) by an acetophenone group (3,4-benzophen). This result is related to the increase of the effective π-electron number and the higher charge transfer induced at the excited state. All these findings were interpreted and supported in the light of time-dependent density functional theory (DFT) calculations. Solvent effects were considered in the quantum chemical calculations using the integral equation formalism variant of the polarizable continuum model.

8.
Opt Lett ; 45(12): 3228-3231, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32538949

RESUMO

Structural disorder inherent to amorphous materials affords them unique, tailorable properties desirable for diverse applications, but our ability to exploit these phenomena is limited by a lack of understanding of complex structure-property relationships. Here we focus on nonlinear optical absorption and derive a relationship between disorder and the two-photon absorption (2PA) coefficient. We employ an open-aperture Z-scan to measure the 2PA spectra of arsenic (III) sulfide (As2S3) chalcogenide glass films processed with two solvents that impart different levels of structural disorder. We find that the effect of solvent choice on 2PA depends on the energy of the exciting photons and explain this as a consequence of bonding disorder and electron state localization. Our results demonstrate how optical nonlinearities in As2S3 can be enhanced through informed processing and present a fundamental relationship between disorder and 2PA for a generalized amorphous solid.

9.
Phys Chem Chem Phys ; 21(12): 6662-6671, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30855605

RESUMO

Boron dipyrromethene type molecules (BODIPYs) are versatile molecules which have been used for applications ranging from photodynamic therapy to solar cells (DSSC). However, these molecules usually do not present high two-photon absorption cross-sections, limiting their use in nonlinear optical applications. Herein, we study a series of BF2-naphthyridine based boron-complexes with electron-donating and withdrawing groups to increase their two-photon absorption. We have found two-photon absorption cross-sections up to approximately 270 GM, which corresponds to an increase of approximately five times in comparison to the average cross-section value reported for molecules with similar conjugation length, indicating such compounds as potential materials for nonlinear applications in both the visible and infrared spectral regions.

10.
J Chem Phys ; 142(6): 064312, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25681911

RESUMO

This paper reports on the static and dynamic first-order hyperpolarizabilities of a class of push-pull octupolar triarylamine derivatives dissolved in toluene. We have combined hyper-Rayleigh scattering experiment and the coupled perturbed Hartree-Fock method implemented at the Density Functional Theory (DFT) level of theory to determine the static and dynamic (at 1064 nm) first-order hyperpolarizability (ßHRS) of nine triarylamine derivatives with distinct electron-withdrawing groups. In four of these derivatives, an azoaromatic unit is inserted and a pronounceable increase of the first-order hyperpolarizability is reported. Based on the theoretical results, the dipolar/octupolar character of the derivatives is determined. By using a polarizable continuum model in combination with the DFT calculations, it was found that although solvated in an aprotic and low dielectric constant solvent, due to solvent-induced polarization and the frequency dispersion effect, the environment substantially affects the first-order hyperpolarizability of all derivatives investigated. This statement is supported due to the solvent effects to be essential for the better agreement between theoretical results and experimental data concerning the dynamic first-order hyperpolarizability of the derivatives. The first-order hyperpolarizability of the derivatives was also modeled using the two- and three-level models, where the relationship between static and dynamic first hyperpolarizabilities is given by a frequency dispersion model. Using this approach, it was verified that the dynamic first hyperpolarizability of the derivatives is satisfactorily reproduced by the two-level model and that, in the case of the derivatives with an azoaromatic unit, the use of a damped few-level model is essential for, considering also the molecular size of such derivatives, a good quantitative agreement between theoretical results and experimental data to be observed.

11.
J Phys Chem A ; 118(30): 5608-13, 2014 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-25007397

RESUMO

Herein, we report on the two-absorption cross-section spectrum of trans-Pt(PBu3)2 (C≡C-C6H4-C≡C-C6H5)2 (PE2) platinum acetylide complex employing the femtosecond wavelength-tunable Z-scan technique. The PE2 complex can be visualized as two branches containing two phenylacetylene units, each one linked by a platinum center, completely transparent in the visible region. Because of this structure, large delocalization of π-electrons allied to the strong intramolecular interaction between the branches is expected. The 2PA absorption spectrum was measured using the femtosecond wavelength-tunable Z-scan technique with low repetition rate (1 kHz), in order to obtain the 2PA spectrum without excited-state contributions. Our results reveal that PE2 in dichloromethane solution presents two 2PA allowed bands located at 570 and 710 nm, with cross section of about 320 and 45 GM, respectively. The first one is related to the strong intramolecular interaction between the molecule's branches due to the presence of platinum atom, while the second one is associated with the breaking of symmetry of the chromophore in solution due, most probably to a large twisting angle of the ligand's phenyl rings relative to the Pt core.

12.
Nanomaterials (Basel) ; 13(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37764600

RESUMO

Nitrogen-vacancy (NV) and other color centers in diamond have attracted much attention as non-photobleaching quantum emitters and quantum sensors. Since microfabrication in bulk diamonds is technically difficult, embedding nanodiamonds with color centers into designed structures is a way to integrate these quantum emitters into photonic devices. In this study, we demonstrate a method to incorporate fluorescent nanodiamonds into engineered microstructures using two-photon polymerization (2PP). We studied the optimal concentration of nanodiamonds in the photoresist to achieve structures with at least one fluorescent NV center and good structural and optical quality. Fluorescence and Raman spectroscopy measurements were used to confirm the presence and location of the nanodiamonds, while absorbance measurements assessed scattering losses at higher concentrations. Our results show the feasibility of fabricating microstructures embedded within fluorescent nanodiamonds via 2PP for photonics and quantum technology applications.

13.
J Biomed Mater Res A ; 111(2): 234-244, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36239143

RESUMO

Microgrooved surfaces are recognized as an important strategy of tissue engineering to promote the alignment of bone cells. In this work, we have investigated the mechanical and morphological aspects of osteoblasts cells after interaction with different micro-structured polymeric surfaces. Femtosecond laser writing technique was used for the construction of circular and parallel microgrooved patterns in biocompatible polymeric surfaces based on pentaerythritol triacrylate. Additionally, we have studied the influence of the biocompatible TiO2 nanocrystals (NCs) related to the cell behavior, when incorporated to the photoresin. The atomic force microscopy technique was used to investigate the biomechanical reaction of the human osteoblast-like MG-63 cells for the different microgroove. It was demonstrated that osteoblasts grown on circular microgrooved surfaces exhibited significantly larger Young's modulus compared to cells sown on flat films. Furthermore, we could observe that TiO2 NCs improved the circular microgrooves effects, resulting in more populated sites, 34% more elongated cells, and increasing the cell stiffness by almost 160%. These results can guide the design and construction of effective scaffold surfaces with circular microgrooves for tissue engineering and bone regeneration.

14.
Opt Express ; 19(11): 10813-23, 2011 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-21643338

RESUMO

We report on a method to study the dynamics of triplet formation based on the fluorescence signal produced by a pulse train. Basically, the pulse train acts as sequential pump-probe pulses that precisely map the excited-state dynamics in the long time scale. This allows characterizing those processes that affect the population evolution of the first excited singlet state, whose decay gives rise to the fluorescence. The technique was proven to be valuable to measure parameters of triplet formation in organic molecules. Additionally, this single beam technique has the advantages of simplicity, low noise and background-free signal detection.


Assuntos
Lasers , Óptica e Fotônica , Porfirinas/química , Algoritmos , Simulação por Computador , Desenho de Equipamento , Fluorescência , Concentração de Íons de Hidrogênio , Cinética , Distribuição Normal , Oscilometria/métodos , Rodaminas/química , Espectrofotometria/métodos , Fatores de Tempo
15.
Polymers (Basel) ; 13(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207089

RESUMO

The direct laser writing technique based on two-photon polymerization (TPP) has evolved considerably over the past two decades. Its remarkable characteristics, such as 3D capability, sub-diffraction resolution, material flexibility, and gentle processing conditions, have made it suitable for several applications in photonics and biosciences. In this review, we present an overview of the progress of TPP towards the fabrication of functionalized microstructures, whispering gallery mode (WGM) microresonators, and microenvironments for culturing microorganisms. We also describe the key physical-chemical fundamentals underlying the technique, the typical experimental setups, and the different materials employed for TPP.

16.
Spectrochim Acta A Mol Biomol Spectrosc ; 260: 119911, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33993027

RESUMO

Absorption and relaxation dynamics of electronic states of free-base, Co(II), Cu(II) and Zn(II) porphyrins bearing a ß-(2,2-difluoro-1,3,2-dioxaborinin-5-yl) group were investigated in dimethyl sulfoxide by using distinct time-resolved spectroscopic techniques. Furthermore, excited state absorption cross-section spectra were determined by combining white light continuum Z-Scan and transient absorption techniques. In the case of the free-base (2H) and Zn(II) porphyrins, we were able to quantify singlet-triplet conversion by analyzing the evolution of time-resolved fluorescence. Relaxation lifetimes from the excited to the ground state were observed in both porphyrins at nanosecond time scale. However, for Co(II) and Cu(II) metalloporphyrins it was observed in the picosecond time scale through femtosecond transient absorption, indicating that both compounds relax back to the ground state only by internal conversion processes. Co(II) and Cu(II) heavy atoms seem to prohibit the radiative and intersystem crossing processes.

17.
Spectrochim Acta A Mol Biomol Spectrosc ; 261: 120063, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34153547

RESUMO

The present work reports the effects of meso-tetrakis (4-sulfonatophenyl) porphyrin (TPPS4) aggregation on its excited states absorption spectra, triplet states quenching by molecular oxygen and singlet oxygen production. Experimental techniques such as optical absorption, Z-scan with a white light continuum source and the Laser Flash Photolysis were used to fulfil the study. J-aggregates possess reverse saturable absorption in the 505-660 nm spectral range with a peak centered close to 540 nm. These facts together with their fast relaxation time suggest that they can be employed as material for ultrafast optical limiting and switching. Even though aggregation reduces the porphyrin excited-state lifetimes and quantum yields, it does not reduce the probability of the contact between the quencher and the excited aggregate. Aggregation does not change the contribution of energy transfer mechanisms to triplet state quenching by molecular oxygen. The production of singlet oxygen, the intense absorption in the phototherapeutic window and the high efficiency of conversion of light energy into heat, allow consider J-aggregates as a theranostic agent for photomedicine. It is proposed to use J-aggregates for diagnostics by photoacoustic images and in combination with a near-infrared photodynamic/photothermal dual mode therapy, thus improving synergistically the therapeutic response.


Assuntos
Porfirinas , Oxigênio Singlete , Cinética , Oxigênio
18.
ACS Omega ; 6(42): 28049-28062, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34723005

RESUMO

This paper demonstrates that femtosecond laser-irradiated Fe2O3 materials containing a mixture of α-Fe2O3 and ε-Fe2O3 phases showed significant improvement in their photoelectrochemical performance and magnetic and optical properties. The absence of Raman-active vibrational modes in the irradiated samples and the changes in charge carrier emission observed in the photocurrent density results indicate an increase in the density of defects and distortions in the crystalline lattice when compared to the nonirradiated ones. The magnetization measurements at room temperature for the nonirradiated samples revealed a weak ferromagnetic behavior, whereas the irradiated samples exhibited a strong one. The optical properties showed a reduction in the band gap energy and a higher conductivity for the irradiated materials, causing a higher current density. Due to the high performance observed, it can be applied in dye-sensitized solar cells and water splitting processes. Quantum mechanical calculations based on density functional theory are in accordance with the experimental results, contributing to the elucidation of the changes caused by femtosecond laser irradiation at the molecular level, evaluating structural, energetic, and vibrational frequency parameters. The surface simulations enable the construction of a diagram that elucidates the changes in nanoparticle morphologies.

19.
J Phys Chem B ; 124(28): 6147-6153, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32539394

RESUMO

Due to their capability of film formation and remarkable optical features, semiconductor polymers with high two-photon absorption (2PA) have been studied as potential candidates for the development of organic photonic platforms. Furthermore, there is a high demand for photonic devices operating in the near-infrared (IR) region. However, the magnitude of the nonlinear optical response of random coil polymers in the IR region is weak due to the loss of molecular structure caused by increasing the π-conjugated backbone. Thus, herein we aim to investigate the molecular structure and 2PA features relationship for four polymers with supramolecular (helical) rodlike structure. Such polymers have a rigid core based on triphenylamine groups connected to the chiral binaphthalene units and a strong electron-withdrawing group (EWG). This kind of structure allows a very high chromophore density, which was responsible for generating 2PA cross-section between 305 GM and 565 GM in the near-IR (900-1300 nm), depending on the EWG strength. in light of the two-level model within the sum-overstates approach, we estimated the degree of intramolecular charge transfer induced by 2PA in the IR region, and values as high as 50-70% were found. Such a critical outcome allows the 2PA cross-section in the IR region to remain high even though the ratio between the visible/IR-band 2PA cross-section increases as a function of EWG strength.

20.
ACS Appl Mater Interfaces ; 12(44): 50033-50038, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33090755

RESUMO

Fabrication of functional silk fibroin microstructures has extensive applications in biotechnology and photonics. Considerable progress has been made based on lithographic methods and self-assembly approaches. However, most methods require chemical modification of silk fibroin, which restricts the functionalities of the designed materials. At the same time, femtosecond laser-induced forward transfer (fs-LIFT) has been explored as a simple and attractive processing tool for microprinting of high-resolution structures. In this paper, we propose the use of LIFT with fs-pulses for creating high-resolution structures of regenerated silk fibroin (SF). Furthermore, upon adding Eu3+/Tb3+ complexes to SF, we have been able to demonstrate the printing by LIFT of luminescent SF structures with a resolution on the order of 2 µm and without material degradation. This approach provides a facile method for printing well-defined two-dimensional (2D) micropatterns of pure and functionalized SF, which can be used in a wide range of optical and biomedical applications.


Assuntos
Fibroínas/química , Lasers , Compostos Organometálicos/química , Impressão Tridimensional , Fibroínas/isolamento & purificação , Compostos Organometálicos/síntese química , Tamanho da Partícula , Propriedades de Superfície , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA