Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Hum Mol Genet ; 23(8): 2198-209, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24256810

RESUMO

Genome-wide association studies of colorectal cancer (CRC) have identified a number of common variants associated with modest risk, including rs3802842 at chromosome 11q23.1. Several genes map to this region but rs3802842 does not map to any known transcribed or regulatory sequences. We reasoned, therefore, that rs3802842 is not the functional single-nucleotide polymorphism (SNP), but is in linkage disequilibrium (LD) with a functional SNP(s). We performed ChIP-seq for histone modifications in SW480 and HCT-116 CRC cells, and incorporated ChIP-seq and DNase I hypersensitivity data available through ENCODE within a 137-kb genomic region containing rs3802842 on 11q23.1. We identified SNP rs10891246 in LD with rs3802842 that mapped within a bidirectional promoter region of genes C11orf92 and C11orf93. Following mutagenesis to the risk allele, the promoter demonstrated lower levels of reporter gene expression. A second SNP rs7130173 was identified in LD with rs3802842 that mapped to a candidate enhancer region, which showed strong unidirectional activity in both HCT-116 and SW480 CRC cells. The risk allele of rs7130173 demonstrated reduced enhancer activity compared with the common allele, and reduced nuclear protein binding affinity in electromobility shift assays compared with the common allele suggesting differential transcription factor (TF) binding. SNPs rs10891246 and rs7130173 are on the same haplotype, and expression quantitative trait loci (eQTL) analyses of neighboring genes implicate C11orf53, C11orf92 and C11orf93 as candidate target genes. These data imply that rs10891246 and rs7130173 are functional SNPs mapping to 11q23.1 and that C11orf53, C11orf92 and C11orf93 represent novel candidate target genes involved in CRC etiology.


Assuntos
Mapeamento Cromossômico , Cromossomos Humanos Par 11/genética , Neoplasias Colorretais/genética , Elementos Facilitadores Genéticos/genética , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Luciferases/metabolismo , Repetições de Microssatélites/genética , Locos de Características Quantitativas , Fatores de Risco , Fatores de Transcrição/metabolismo , Células Tumorais Cultivadas
2.
Nat Commun ; 7: 11375, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27117709

RESUMO

Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 × 10(-8)) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci, we performed a meta-analysis of 11 genome-wide association studies (GWAS) consisting of 4,939 ER-negative cases and 14,352 controls, combined with 7,333 ER-negative cases and 42,468 controls and 15,252 BRCA1 mutation carriers genotyped on the iCOGS array. We identify four previously unidentified loci including two loci at 13q22 near KLF5, a 2p23.2 locus near WDR43 and a 2q33 locus near PPIL3 that display genome-wide significant associations with ER-negative breast cancer. In addition, 19 known breast cancer risk loci have genome-wide significant associations and 40 had moderate associations (P<0.05) with ER-negative disease. Using functional and eQTL studies we implicate TRMT61B and WDR43 at 2p23.2 and PPIL3 at 2q33 in ER-negative breast cancer aetiology. All ER-negative loci combined account for ∼11% of familial relative risk for ER-negative disease and may contribute to improved ER-negative and BRCA1 breast cancer risk prediction.


Assuntos
Neoplasias da Mama/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Receptores de Estrogênio/genética , Proteína BRCA1/genética , Cromossomos Humanos Par 2/genética , Ciclofilinas/genética , Feminino , Genótipo , Heterozigoto , Humanos , Mutação , Polimorfismo de Nucleotídeo Único , Fatores de Risco , tRNA Metiltransferases
3.
Dev Dyn ; 236(8): 2245-57, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17626284

RESUMO

To identify genes heretofore undiscovered as critical players in the biogenesis of teeth, we have used microarray gene expression analysis of the developing mouse molar tooth (DMT) between postnatal day (P) 1 and P10 to identify genes differentially expressed when compared with 16 control tissues. Of the top 100 genes exhibiting increased expression in the DMT, 29 were found to have been previously associated with tooth development. Differential expression of the remaining 71 genes not previously associated with tooth development was confirmed by quantitative reverse transcription-polymerase chain reaction analysis. Further analysis of seven of the latter genes by mRNA in situ hybridization found that five were specific to the developing tooth in the craniofacial region (Rspo4, Papln, Amtn, Gja1, Maf). Of the remaining two, one was found to be more widely expressed (Sp7) and the other was found to be specific to the nasal serous gland, which is close to, but distinct from, the developing tooth (Vrm).


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Dente/crescimento & desenvolvimento , Animais , Camundongos , Análise em Microsséries , RNA Mensageiro/análise , Fatores de Tempo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA