Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 272: 116019, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38295734

RESUMO

Agricultural production relies heavily on pesticides. However, factors like inefficient application, pesticide resistance, and environmental conditions reduce their effective utilization in agriculture. Subsequently, pesticides transfer into the soil, adversely affecting its physicochemical properties, microbial populations, and enzyme activities. Different pesticides interacting can lead to combined toxicity, posing risks to non-target organisms, biodiversity, and organism-environment interactions. Pesticide exposure may cause both acute and chronic effects on human health. Biochar, with its high specific surface area and porosity, offers numerous adsorption sites. Its stability, eco-friendliness, and superior adsorption capabilities render it an excellent choice. As a versatile material, biochar finds use in agriculture, environmental management, industry, energy, and medicine. Added to soil, biochar helps absorb or degrade pesticides in contaminated areas, enhancing soil microbial activity. Current research primarily focuses on biochar produced via direct pyrolysis for pesticide adsorption. Studies on functionalized biochar for this purpose are relatively scarce. This review examines biochar's pesticide absorption properties, its characteristics, formation mechanisms, environmental impact, and delves into adsorption mechanisms, functionalization methods, and their prospects and limitations.


Assuntos
Praguicidas , Poluentes do Solo , Humanos , Praguicidas/química , Adsorção , Poluentes do Solo/análise , Carvão Vegetal/química , Solo/química , Biodiversidade
2.
Bioorg Med Chem ; 95: 117486, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37847948

RESUMO

Chemotherapy is the mainstay in the treatment of breast cancer. However, many drugs that are commonly used in clinical practice have a high incidence of side effects and multidrug resistance (MDR), which is mainly caused by overexpression of drug transporters and related enzymes in breast cancer cells. In recent years, researchers have been working hard to find newer and safer drugs to overcome MDR in breast cancer. In this review, we provide the molecule mechanism of MDR in breast cancer, categorize potential lead compounds that inhibit single or multiple drug transporter proteins, as well as related enzymes. Additionally, we have summarized the structure-activity relationship (SAR) based on potential breast cancer MDR modulators with lower side effects. The development of novel approaches to suppress MDR is also addressed. These lead compounds hold great promise for exploring effective chemotherapy agents to overcome MDR, providing opportunities for curing breast cancer in the future.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Resistência a Múltiplos Medicamentos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
3.
Molecules ; 28(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36677638

RESUMO

Chlorfenapyr, as a highly effective and low-toxicity insect growth regulation inhibitor, has been used to control cross-cruciferous vegetable pests. However, the pesticide residue caused by its application threatens human health. In this paper, the residue digestion and final residue of chlorfenapyr in radish were studied in a field experiment. The results of the dynamic digestion test showed that the half-life of chlorfenapyr in radish leaves ranged from 6.0 to 6.4 days, and the digestion rate was fast. The median residual values of chlorfenapyr in radish and radish leaves at 14 days after treatment were 0.12 and 3.92 mg/kg, respectively. The results of the dietary intake risk assessment showed that the national estimated daily intake (NEDI) of chlorfenapyr in various populations in China were 0.373 and 5.66 µg/(kg bw·d), respectively. The risk entropy (RQ) was 0.012 and 0.147, respectively, indicating that the chronic dietary intake risk of chlorfenapyr in radish was low. The results of this study provided data support and a theoretical basis for guiding the scientific use of chlorfenapyr in radish production and evaluating the dietary risk of chlorfenapyr in vegetables.


Assuntos
Inseticidas , Resíduos de Praguicidas , Piretrinas , Raphanus , Humanos , Piretrinas/análise , Resíduos de Praguicidas/análise , Medição de Risco , Inseticidas/análise
4.
Ecotoxicol Environ Saf ; 241: 113784, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35738101

RESUMO

Sedaxane was a novel chiral fungicide that contains four enantiomers. Unfortunately, the stereoselective bioactivity, toxicity and degradation of sedaxane have not been clarified. In this study, we identified the absolute configuration of the four sedaxane enantiomers at first time. The stereoselective bioactivity toward three wheat and rice pathogens, stereoselective acute toxicity to aquatic organisms (Selenastrum capricornutum and Daphnia magna), and stereoselective degradation of sedaxane were studied. The 1 S,2S-(+)-sedaxane possessed 5.4-7.3 times greater bioactivity than 1 R,2R-(-)-sedaxane to Rhizoctonia solani and Rhizoctonia cerealis. Contrarily, the 1 R,2S-(+)-sedaxane had 4.2 times greater activity than 1 S,2S-(+)-sedaxane against Fusarium graminearum. The 1 R,2R-(-)-sedaxane had 2.8 times greater toxicity than 1 S,2S-(+)-sedaxane to S. capricornutum. The chiral determination method used ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The recovery of sedaxane stereoisomers ranged from 83.1 % to 98.2 %, with RSDs (Relative standard deviations) of 1.2 %- 8.4 %. The trans-sedaxane existed stereoselective degradation phenomenon in the rice-wheat rotation mode, and 1 S,2S-(+)-sedaxane was preferentially degraded. Our results would provide scientific importance and practical guidance to the safety evaluation of chiral pesticides.


Assuntos
Fungicidas Industriais , Oryza , Anilidas , Cromatografia Líquida , Fungicidas Industriais/química , Fungicidas Industriais/toxicidade , Pirazóis , Estereoisomerismo , Espectrometria de Massas em Tandem/métodos , Triazóis/química , Triticum
5.
Pharmacol Res ; 173: 105900, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34547385

RESUMO

Phosphatidylinositol 3-kinases (PI3Ks) are the family of vital lipid kinases widely distributed in mammalian cells. The overexpression of PI3Ks leads to hyperactivation of the PI3K/AKT/mTOR pathway, which is considered a pivotal pathway in the occurrence and development of tumors. Hence, PI3Ks are viewed as promising therapeutic targets for anti-cancer therapy. To date, some PI3K inhibitors have achieved desired therapeutic effect via inhibiting the activity of PI3Ks or reducing the level of PI3Ks in clinical trials, among which, Idelalisib, Alpelisib and Duvelisib have been approved by the FDA for treatment of ER+/HER2- advanced metastatic breast cancer and refractory chronic lymphocytic leukemia (CLL) and small lymphocytic lymphomas (SLL). This review focuses on the latest advances of PI3K inhibitors with efficacious anticancer activity, which are classified into Pan-PI3K inhibitors, isoform-specific PI3K inhibitors and dual PI3K/mTOR inhibitors based on the isoform affinity. Their corresponding structure characteristics and structures-activity relationship (SAR), together with the progress in the clinical application are mainly discussed. Additionally, the new PI3K inhibitory strategy, such as PI3K degradation agent, for the design of potential PI3K candidates to overcome drug resistance is referred as well.


Assuntos
Antineoplásicos , Inibidores de Fosfoinositídeo-3 Quinase , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Humanos , Isoenzimas/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/química , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Proteólise , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/antagonistas & inibidores
6.
Pak J Pharm Sci ; 34(3(Special)): 1271-1276, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34602399

RESUMO

The research on bioactive secondary metabolites from Aspergillus fumigatus afforded six compounds, which were identified by mass spectrometer (MS) and nuclear magnetic resonance (NMR) spectroscopic analysis as cyclopyazonic acid (1), trypacidin A (2), asterric acid (3), methyl asterrate (4), demethylcitreoviranol (5), as well as (5-hydroxy-2-oxo-2H-pyran-4-yl) methyl acetate (6). Cyclopyazonic acid (1) was found to have potent antibacterial effects, especially against Bacillus licheniformis with minimal inhibitory concentration (MIC) value of 3.7µg/mL. Its antibacterial effects were possibly related to the olefinic acid group in the structure. Phenyl ether derivatives 3 and 4, and trypacidin A (2) also exhibited antimicrobial effects. In addition, compound 6 showed significant antioxidant effects with half maximal effective concentration (EC50) value of 10.2µM in the ABTS (2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid) assay, which was better than the positive control.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/farmacologia , Aspergillus fumigatus/metabolismo , Acetatos/química , Acetatos/farmacologia , Animais , Aspergillus fumigatus/química , Bacillus/efeitos dos fármacos , Bacillus licheniformis/efeitos dos fármacos , Bacillus subtilis/efeitos dos fármacos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Escherichia coli/efeitos dos fármacos , Indóis/química , Indóis/farmacologia , Insetos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Micotoxinas/farmacologia , Fenóis/química , Fenóis/farmacologia , Éteres Fenílicos/química , Éteres Fenílicos/farmacologia , Espectroscopia de Prótons por Ressonância Magnética , Pseudomonas aeruginosa/efeitos dos fármacos , Piranos/química , Piranos/farmacologia , Staphylococcus aureus/efeitos dos fármacos
7.
J Asian Nat Prod Res ; 22(7): 647-654, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31120358

RESUMO

One new epoxydon ester (1) and a new benzolactone derivative (2), along with four known compounds (3-6), were isolated from the insect-associated fungus Phoma sp. Their structures were confirmed by extensive MS and NMR spectroscopic analysis and their absolute configurations were determined by a combination of modified Mosher method and Mo2(OCOCH3)4-induced electronic circular dichroism (ECD) experiments. Compounds 1 and 5 were revealed to have potent antioxidant activities, which were approximate to the potency of the positive control trolox. In addition, 1 also exhibited moderate cytotoxic effect against human MGC-803 tumor cell line.[Formula: see text].


Assuntos
Antioxidantes , Ascomicetos , Animais , Dicroísmo Circular , Compostos de Epóxi , Humanos , Insetos , Estrutura Molecular
8.
BMC Plant Biol ; 19(1): 245, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31182022

RESUMO

BACKGROUND: Studies have demonstrated that BBX (B-BOX) genes play crucial roles in regulatory networks controlling plant growth, developmental processes and stress response. Nevertheless, comprehensive study of BBX genes in orchids (Orchidaceae) is not well studied. The newly released genome sequences of Dendrobium officinale and Phalaenopsis equestris have allowed a systematic analysis of these important BBX genes in orchids. RESULTS: Here we identified 19 (DoBBX01-19) and 16 (PeBBX01-16) BBX genes from D. officinale and P. equestris, respectively, and clustered into five clades (I-V) according to phylogenetic analysis. Thirteen orthologous, two DoBBXs paralogous and two PeBBXs paralogous gene pairs were validated. This gene family mainly underwent purifying selection, but five domains experienced positive selection during evolution. Noteworthy, the expression patterns of root, root_tips, stem, leaf, speal, column, lip, and flower_buds revealed that they might contribution to the formation of these tissues. According to the cis-regulatory elements analysis of BBX genes, qRT-PCR experiments were carried out using D. officinale PLBs (protocorm-like bodies) and displayed that these BBX genes were differentially regulated under AgNO3, MeJA (Methyl Jasmonate), ABA (abscisic acid) and SA (salicylic acid) treatments. CONCLUSIONS: Our analysis exposed that DoBBX genes play significant roles in plant growth and development, and response to different environmental stress conditions of D. officinale, which provide aid in the selection of appropriate candidate genes for further functional characterization of BBX genes in plants.


Assuntos
Dendrobium/genética , Reguladores de Crescimento de Plantas , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Transcriptoma , Ácido Abscísico/administração & dosagem , Acetatos/administração & dosagem , Sequência de Aminoácidos , Ciclopentanos/administração & dosagem , Dendrobium/efeitos dos fármacos , Perfilação da Expressão Gênica , Família Multigênica/efeitos dos fármacos , Oxilipinas/administração & dosagem , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Ácido Salicílico/administração & dosagem , Nitrato de Prata/administração & dosagem , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
9.
Funct Integr Genomics ; 18(6): 673-684, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29948460

RESUMO

GDSL-type esterase/lipase (GELP) is mainly characterized by a conserved GDSL domain at N terminus, and is widely found in all living species, both prokaryotes and eukaryotes. GELP gene family consists of a wide range of members playing important roles in plant physiological processes, such as development, stress responses, and functional divergences. In our study, 597 GELP genes were identified from six Rosaceae genomes (i.e., Fragaria vesca, Prunus persica, Prunus avium, Prunus mume, Pyrus bretschneideri, and Malus domestica) by a comprehensive analysis. All GELP genes were further divided into ten subfamilies based on phylogenetic tree analysis. Subfamily D and subfamily E are the two largest subfamilies. Microcollinearity analysis suggested that WGD/segmental events contribute to the expansion of the GELP gene family in M. domestica and P. bretschneideri compared to F. vesca, P. persica, P. avium, and P. mume. Some PbGELPs were expressed during the fruit development of P. bretschneideri and pollen tubes, indicating their activity in these tissues. The expression divergence of PbGELP duplication gene pairs suggests that many mutations were allowed during evolution, although the structure of GELP genes was highly conserved. The current study results provided the feasibility to understand the expansion and evolution patterns of GELP in Rosaceae genomes, and highlight the function during P. bretschneideri fruits and pollen tubes development.


Assuntos
Esterases/genética , Evolução Molecular , Genoma de Planta/genética , Rosaceae/genética , Frutas/genética , Frutas/crescimento & desenvolvimento , Duplicação Gênica/genética , Regulação da Expressão Gênica de Plantas , Lipase , Filogenia
10.
Funct Integr Genomics ; 18(5): 519-531, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29675811

RESUMO

PHD-finger proteins, which belongs to the type of zinc finger family, and that play an important role in the regulation of both transcription and the chromatin state in eukaryotes. Currently, PHD-finger proteins have been well studied in animals, while few studies have been carried out on their function in plants. In the present study, 129 non-redundant PHD-finger genes were identified from 5 Rosaceae species (pear, apple, strawberry, mei, and peach); among them, 31 genes were identified in pear. Subsequently, we carried out a bioinformatics analysis of the PHD-finger genes. Thirty-one PbPHD genes were divided into 7 subfamilies based on the phylogenetic analysis, which are consistent with the intron-exon and conserved motif analyses. In addition, we identified five segmental duplication events, implying that the segmental duplications might be a crucial role in the expansion of the PHD-finger gene family in pear. The microsynteny analysis of five Rosaceae species showed that there were independent duplication events in addition to the genome-wide duplication of the pear genome. Subsequently, ten expressed PHD-finger genes of pear fruit were identified using qRT-PCR, and one of these genes, PbPHD10, was identified as an important candidate gene for the regulation of lignin synthesis. Our research provides useful information for the further analysis of the function of PHD-finger gene family in pear.


Assuntos
Cromatina/química , Frutas/genética , Regulação da Expressão Gênica de Plantas , Dedos de Zinco PHD , Proteínas de Plantas/genética , Pyrus/genética , Cromatina/metabolismo , Biologia Computacional , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Perfilação da Expressão Gênica , Ontologia Genética , Lignina/biossíntese , Anotação de Sequência Molecular , Família Multigênica , Filogenia , Proteínas de Plantas/metabolismo , Pyrus/classificação , Pyrus/crescimento & desenvolvimento , Pyrus/metabolismo , Duplicações Segmentares Genômicas , Transcriptoma
11.
Molecules ; 23(5)2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29751599

RESUMO

Sucrose synthase (SS) is a key enzyme involved in sucrose metabolism that is critical in plant growth and development, and particularly quality of the fruit. Sucrose synthase gene families have been identified and characterized in plants various plants such as tobacco, grape, rice, and Arabidopsis. However, there is still lack of detailed information about sucrose synthase gene in pear. In the present study, we performed a systematic analysis of the pear (Pyrus bretschneideri Rehd.) genome and reported 30 sucrose synthase genes. Subsequently, gene structure, phylogenetic relationship, chromosomal localization, gene duplications, promoter regions, collinearity, RNA-Seq data and qRT-PCR were conducted on these sucrose synthase genes. The transcript analysis revealed that 10 PbSSs genes (30%) were especially expressed in pear fruit development. Additionally, qRT-PCR analysis verified the RNA-seq data and shown that PbSS30, PbSS24, and PbSS15 have a potential role in the pear fruit development stages. This study provides important insights into the evolution of sucrose synthase gene family in pear and will provide assistance for further investigation of sucrose synthase genes functions in the process of fruit development, fruit quality and resistance to environmental stresses.


Assuntos
Genes de Plantas , Glucosiltransferases/química , Glucosiltransferases/genética , Família Multigênica , Pyrus/genética , Mapeamento Cromossômico , Sequência Conservada , Mineração de Dados , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Filogenia , Conformação Proteica , Pyrus/classificação , Elementos Reguladores de Transcrição
12.
BMC Plant Biol ; 17(1): 156, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28927374

RESUMO

BACKGROUND: The B-BOX (BBX) proteins have important functions in regulating plant growth and development. In plants, the BBX gene family has been identified in several plants, such as rice, Arabidopsis and tomato. However, there still lack a genome-wide survey of BBX genes in pear. RESULTS: In the present study, a total of 25 BBX genes were identified in pear (Pyrus bretschneideri Rehd.). Subsequently, phylogenetic relationship, gene structure, gene duplication, transcriptome data and qRT-PCR were conducted on these BBX gene members. The transcript analysis revealed that twelve PbBBX genes (48%) were specifically expressed in pear pollen tubes. Furthermore, qRT-PCR analysis indicated that both PbBBX4 and PbBBX13 have potential role in pear fruit development, while PbBBX5 should be involved in the senescence of pear pollen tube. CONCLUSIONS: This study provided a genome-wide survey of BBX gene family in pear, and highlighted its roles in both pear fruits and pollen tubes. The results will be useful in improving our understanding of the complexity of BBX gene family and functional characteristics of its members in future study.


Assuntos
Evolução Molecular , Genes de Plantas , Pólen/crescimento & desenvolvimento , Pyrus/genética , Duplicação Gênica , Perfilação da Expressão Gênica , Genoma de Planta , Família Multigênica , Filogenia , Pólen/genética , Pyrus/classificação , Pyrus/crescimento & desenvolvimento , Dedos de Zinco/genética
13.
Pharmacol Rep ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965200

RESUMO

Saikosaponin D, a saponin compound, is extracted from Bupleurum and is a principal active component of the plant. It boasts a variety of pharmacologic effects including anti-inflammatory, antioxidant, immunomodulatory, metabolic, and anti-tumor properties, drawing significant attention in anti-tumor research in recent years. Research indicates that saikosaponin D inhibits the proliferation of numerous tumor cells, curbing the progression of cancers such as liver, pancreatic, lung, glioma, ovarian, thyroid, stomach, and breast cancer. Its anti-tumor mechanisms largely involve inhibiting tumor cell proliferation, promoting tumor cell apoptosis, thwarting tumor-cell invasion, and modulating tumor cell autophagy. Moreover, saikosaponin D enhances the sensitivity to anti-tumor drugs and augments body immunity. Given its multi-faceted anti-tumor roles, saikosaponin D offers promising potential in anti-tumor therapy. This paper reviews recent studies on its anti-tumor effects, aiming to furnish new theoretical insights for clinical cancer treatments.

14.
Front Oncol ; 14: 1334915, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515577

RESUMO

The dry root of the soybean plant Astragalus membranaceus (Fisch) Bge. var. mongholicus (Bge) Hsiao or A. membranaceus (Fisch) Bge, Astragali Radix (AR) has a long medicinal history. Astragalus polysaccharide (APS), the natural macromolecule that exhibits immune regulatory, anti-inflammatory, anti-tumor, and other pharmacological activities, is an important active ingredient extracted from AR. Recently, APS has been increasingly used in cancer therapy owing to its anti-tumor ability as it prevents the progression of prostate, liver, cervical, ovarian, and non-small-cell lung cancer by suppressing tumor cell growth and invasion and enhancing apoptosis. In addition, APS enhances the sensitivity of tumors to antineoplastic agents and improves the body's immunity. This macromolecule has prospects for broad application in tumor therapy through various pathways. In this article, we present the latest progress in the research on the anti-tumor effects of APS and its underlying mechanisms, aiming to provide novel theoretical support and reference for its use in cancer therapy.

15.
Biomed Pharmacother ; 170: 116097, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38160624

RESUMO

α-Hederin is a monosaccharide pentacyclic triterpene saponin compound derived from the Chinese herb, Pulsatilla. It has garnered considerable attention for its anti-tumor, anti-inflammatory, and spasmolytic pharmacological activities. Given the rising incidence of cancer and the pronounced adverse reactions associated with chemotherapy drugs-which profoundly impact the quality of life for cancer patients-there is an immediate need for safe and effective antitumor agents. Traditional drugs and their anticancer effects have become a focal point of research in recent years. Studies indicate that α-Hederin can hinder tumor cell proliferation and impede the advancement of various cancers, including breast, lung, colorectal, and liver cancers. The principal mechanism behind its anti-tumor activity involves inhibiting tumor cell proliferation, facilitating tumor cell apoptosis, and arresting the cell cycle process. Current evidence suggests that α-Hederin can exert its anti-tumor properties through diverse mechanisms, positioning it as a promising agent in anti-tumor therapy. However, a comprehensive literature search revealed a gap in the comprehensive understanding of α-Hederin. This paper aims to review the available literature on the anti-tumor mechanisms of α-Hederin, hoping to provide valuable insights for the clinical treatment of malignant tumors and the innovation of novel anti-tumor medications.


Assuntos
Antineoplásicos , Neoplasias Hepáticas , Ácido Oleanólico , Saponinas , Humanos , Linhagem Celular Tumoral , Qualidade de Vida , Saponinas/farmacologia , Saponinas/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico
16.
J Agric Food Chem ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607803

RESUMO

The occurrence of maize ear rot caused by Fusarium verticillioides (F. verticillioides) poses a threat to the yield and quality of maize. Mefentrifluconazole enantiomers appear to have strong stereoselective activity against F. verticillioides and cause differences in fumonisin production. We evaluated the stereoselective activity of mefentrifluconazole enantiomers by determining inhibition of the strain, hyphae, and conidia. Strain inhibition by R-(-)-mefentrifluconazole was 241 times higher than S-(+)-mefentrifluconazole and 376 times higher in conidia inhibition. For the mechanism of the enantioselective bioactivity, R-mefentrifluconazole had stronger binding to proteins than S-(+)-mefentrifluconazole. Under several concentration conditions, the fumonisin concentration was 1.3-24.9-fold higher in the R-(-)-mefentrifluconazole treatment than in the S-(+)-mefentrifluconazole treatment. The R-enantiomer stimulated fumonisin despite a higher bioactivity. As the incubation time increased, the stimulation of the enantiomers on fumonisin production decreased. R-(-)-Mefentrifluconazole stimulated higher fumonisin production in F. verticillioides at 25 °C compared to 30 °C. This study established a foundation for the development of high-efficiency and low-risk pesticides.

17.
Pharmacol Rep ; 75(4): 891-906, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37202657

RESUMO

Cancer is a significant disease that poses a major threat to human health. The main therapeutic methods for cancer include traditional surgery, radiotherapy, chemotherapy, and new therapeutic methods such as targeted therapy and immunotherapy, which have been developed rapidly in recent years. Recently, the tumor antitumor effects of the active ingredients of natural plants have attracted extensive attention. Ferulic acid (FA), (3-methoxy-4-hydroxyl cinnamic), with the molecular formula is C10H10O4, is a phenolic organic compound found in ferulic, angelica, jujube kernel, and other Chinese medicinal plants but is also, abundant in rice bran, wheat bran, and other food raw materials. FA has anti-inflammatory, analgesic, anti-radiation, and immune-enhancing effects and also shows anticancer activity, as it can inhibit the occurrence and development of various malignant tumors, such as liver cancer, lung cancer, colon cancer, and breast cancer. FA can cause mitochondrial apoptosis by inducing the generation of intracellular reactive oxygen species (ROS). FA can also interfere with the cell cycle of cancer cells, arrest most cancer cells in G0/G1 phase, and exert an antitumor effect by inducing autophagy; inhibiting cell migration, invasion, and angiogenesis; and synergistically improving the efficacy of chemotherapy drugs and reducing adverse reactions. FA acts on a series of intracellular and extracellular targets and is involved in the regulation of tumor cell signaling pathways, including the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT), B-cell lymphoma-2 (Bcl-2), and tumor protein 53 (P53) pathways and other signaling pathways. In addition, FA derivatives and nanoliposomes, as platforms for drug delivery, have an important regulatory effect on tumor resistance. This paper reviews the effects and mechanisms of antitumor therapies to provide new theoretical support and insight for clinical antitumor therapy.


Assuntos
Neoplasias Pulmonares , Fosfatidilinositol 3-Quinases , Humanos , Proliferação de Células , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Ácidos Cumáricos/farmacologia , Ácidos Cumáricos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-akt/metabolismo
18.
Sci Total Environ ; 874: 162585, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36870510

RESUMO

Honey bees play an important role in the ecological environment. Regrettably, a decline in honey bee colonies caused by chemical insecticides has occurred throughout the world. Potential stereoselective toxicity of chiral insecticides may be a hidden source of danger to bee colonies. In this study, the stereoselective exposure risk and mechanism of malathion and its chiral metabolite malaoxon were investigated. The absolute configurations were identified using an electron circular dichroism (ECD) model. Ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used for chiral separation. In pollen, the initial residues of malathion and malaoxon enantiomers were 3571-3619 and 397-402 µg/kg, respectively, and R-malathion degraded relatively slowly. The oral LD50 values of R-malathion and S-malathion were 0.187 and 0.912 µg/bee with 5 times difference, respectively, and the malaoxon values were 0.633 and 0.766 µg/bee. The Pollen Hazard Quotient (PHQ) was used to evaluate exposure risk. R-malathion showed a higher risk. An analysis of the proteome, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and subcellular localization, indicated that energy metabolism and neurotransmitter transport were the main affected pathways. Our results provide a new scheme for the evaluation of the stereoselective exposure risk of chiral pesticides to honey bees.


Assuntos
Inseticidas , Estupro , Abelhas , Animais , Malation/toxicidade , Malation/química , Inseticidas/toxicidade , Inseticidas/análise , Proteoma , Cromatografia Líquida , Espectrometria de Massas em Tandem
19.
J Agric Food Chem ; 71(3): 1426-1433, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36630283

RESUMO

Fluindapyr is a novel chiral succinate dehydrogenase inhibitor used to control fungal diseases. The enantioselective effects of fluindapyr in paddy ecosystems are unknown. We developed a new chiral determination method of fluindapyr using ultrahigh performance liquid chromatography tandem mass spectrometry. The absolute configuration of the fluindapyr enantiomers was identified by an electron circular dichroism model. A new husk-based biochar material was used to optimize and establish a QuEchERs method for paddy soil determination. Under anaerobic conditions, the half-lives of R-fluindapyr and S-fluindapyr in paddy soil were 69.6 and 101.8 days, respectively. R-fluindapyr degraded more rapidly than S-fluindapyr. S-fluindapyr was 87.8 times more active against Rhizoctonia solani than R-fluindapyr. The enantioselective bioactivity mechanism was illustrated by molecular docking between the fluindapyr enantiomers and SDH of R. solani. The binding powers of R-fluindapyr and S-fluindapyr to proteins were -32.12 and - 42.91 kcal/mol, respectively. This study reports the stereoselectivity of fluindapyr about determination, degradation, bioactivity, and its mechanism. It provides a foundation for an in-depth study of fluindapyr at the enantiomer level.


Assuntos
Fungicidas Industriais , Poluentes do Solo , Fungicidas Industriais/química , Ecossistema , Estereoisomerismo , Simulação de Acoplamento Molecular , Poluentes do Solo/química , Espectrometria de Massas em Tandem/métodos , Solo/química
20.
Oncol Rep ; 49(1)2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36416347

RESUMO

Tumors are one of the most common fatal diseases worldwide and pose a severe threat to human health. Effective tumor prevention and treatment strategies are persistent challenges in the medical community. Angiogenesis plays a critical role in and is the basis for tumor development and metastasis. Circular RNAs (circRNAs) are novel single­stranded covalently closed RNA molecules that are widely expressed in tumors due to their structural specificity and conservation. circRNAs affect angiogenesis by functioning as microRNA sponges to regulate vascular endothelial growth factor­related pathways, thereby participating in various stages of tumor growth, invasion and proliferation. The present review summarizes the involvement of circRNAs in the regulation of tumor angiogenesis through competing endogenous RNA mechanisms, with a particular focus on the regulatory role of circRNAs in tumor angiogenesis in various systems. It is considered that circRNAs have great potential for use as tumor diagnostic markers and anti­angiogenic therapies, and are thus worthy of further research and exploration.


Assuntos
MicroRNAs , Neoplasias , Humanos , RNA Circular/genética , Fator A de Crescimento do Endotélio Vascular , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Biomarcadores Tumorais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA