Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 29(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38675663

RESUMO

PURPOSE: To investigate and systematically describe the mechanism of action of Prunella vulgaris (P. vulgaris) against digestive system tumors and related toxicity reduction. METHODS: This study briefly describes the history of medicinal food and the pharmacological effects of P. vulgaris, focusing on the review of the anti-digestive tumor effects of the active ingredients of P. vulgaris and the mechanism of its toxicity reduction. RESULTS: The active ingredients of P. vulgaris may exert anti-tumor effects by inducing the apoptosis of cancer cells, inhibiting angiogenesis, inhibiting the migration and invasion of tumor cells, and inhibiting autophagy. In addition, P. vulgaris active ingredients inhibit the release of inflammatory factors and macrophages and increase the level of indicators of oxidative stress through the modulation of target genes in the pathway to achieve the effect of toxicity reduction. CONCLUSION: The active ingredients in the medicine food homology plant P. vulgaris not only treat digestive system tumors through different mechanisms but also reduce the toxic effects. P. vulgaris is worthy of being explored more deeply.


Assuntos
Prunella , Prunella/química , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Animais , Estresse Oxidativo/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química
2.
Molecules ; 29(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38611704

RESUMO

Tumors have a huge impact on human life and are now the main cause of disease-related deaths. The main means of treatment are surgery and radiotherapy, but they are more damaging to the organism and have a poor postoperative prognosis. Therefore, we urgently need safe and effective drugs to treat tumors. In recent years, Chinese herbal medicines have been widely used in tumor therapy as complementary and alternative therapies. Medicinal and edible herbs are popular and have become a hot topic of research, which not only have excellent pharmacological effects and activities, but also have almost no side effects. Therefore, as a typical medicine and food homology, some components of Paeoniae Radix Alba (PRA, called Baishao in China) have been shown to have good efficacy and safety against cancer. Numerous studies have also shown that Paeoniae Radix Alba and its active ingredients treat cancer through various pathways and are also one of the important components of many antitumor herbal compound formulas. In this paper, we reviewed the literature on the intervention of Paeoniae Radix Alba in tumors and its mechanism of action in recent years and found that there is a large amount of literature on its effect on total glucosides of paeony (TGP) and paeoniflorin (PF), as well as an in-depth discussion of the mechanism of action of Paeoniae Radix Alba and its main constituents, with a view to promote the clinical development and application of Paeoniae Radix Alba in the field of antitumor management.


Assuntos
Medicamentos de Ervas Chinesas , Medicina , Neoplasias , Paeonia , Extratos Vegetais , Humanos , China , Neoplasias/tratamento farmacológico
3.
Molecules ; 28(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37570851

RESUMO

Perilla frutescens is an annual herb of the Labiatae family and is widely grown in several countries in Asia. Perilla frutescens is a plant that is used medicinally in its entirety, as seen in its subdivision into perilla seeds, perilla stalks, and perilla leaves, which vary more markedly in their chemical composition. Several studies have shown that Perilla frutescens has a variety of pharmacological effects, including anti-inflammatory, antibacterial, detoxifying, antioxidant, and hepatoprotective. In the absence of a review of Perilla frutescens for the treatment of cancer. This review provides an overview of the chemical composition and molecular mechanisms of Perilla frutescens for cancer treatment. It was found that the main active components of Perilla frutescens producing cancer therapeutic effects were perilla aldehyde (PAH), rosmarinic acid (Ros A), lignan, and isoestrogen (IK). In addition to these, extracts of the leaves and fruits of Perilla frutescens are also included. Among these, perilla seed oil (PSO) has a preventive effect against colorectal cancer due to the presence of omega-3 polyunsaturated fatty acids. This review also provides new ideas and thoughts for scientific innovation and clinical applications related to Perilla frutescens.


Assuntos
Ácidos Graxos Ômega-3 , Neoplasias , Perilla frutescens , Perilla , Perilla frutescens/química , Perilla/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antioxidantes , Folhas de Planta , Neoplasias/tratamento farmacológico
4.
Biochem Biophys Res Commun ; 609: 23-30, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35413536

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with unknown etiology, characterized by motor neuron degeneration, and there is no highly effective treatment. The canonical WNT/ß-catenin signaling pathway has a critical role in the physiological and pathophysiological processes of the central nervous system. In this study, we investigated the regulatory mechanism of the WNT/ß-catenin signaling pathway from the perspective of ligand-receptor binding and its relationship with the degeneration of ALS motor neurons. We used hSOD1-G93A mutant ALS transgenic mice and hSOD1-G93A mutant NSC34 cells combined with morphological and molecular biology techniques to determine the role of the WNT/ß-catenin pathway in ALS. Our findings demonstrated that WNT5A regulates the WNT/ß-catenin signaling pathway by binding to the FZD4 receptor in the pathogenesis of ALS and affects the proliferation and apoptosis of ALS motor neurons. Therefore, these findings may lead to the development of novel therapies to support the survival of ALS motor neurons.


Assuntos
Esclerose Lateral Amiotrófica , Receptores Frizzled/metabolismo , Doenças Neurodegenerativas , Proteína Wnt-5a/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Doenças Neurodegenerativas/metabolismo , Medula Espinal/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo
5.
BMC Neurosci ; 23(1): 50, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945502

RESUMO

BACKGROUND: Evidences indicate that inflammasome compounds participate in amyotrophic lateral sclerosis (ALS), a fatal progressive motoneuron degenerative disease. Researchers have observed the expressions of nucleotide oligomerization domain (NOD)-like receptor protein 3 (NLRP3) related inflammasome components in specific regions of the central nervous system in different ALS models, but the cellular spatiotemporal evolution of this canonical inflammasome pathway and pyroptosis during ALS progression are unclear. METHODS: The spinal cords of hSOD1G93A mice (ALS mice) and age-matched littermates (CON mice) were dissected at pre-symptomatic stage (60 d), early- symptomatic stage (95 d), symptomatic stage (108 d) and late-symptomatic stage (122 d) of the disease. By using Nissl staining, double immunofluorescence labelling, qRT-PCR or western blot, we detected morphology change and the expression, cellular location of GSDMD, NLRP3, caspase-1 and IL-1ß in the ventral horn of lumbar spinal cords over the course of disease. RESULTS: Neural morphology changes and GSDMD+/NeuN+ double positive cells were observed in ventral horn from ALS mice even at 60 d of age, even though there were no changes of GSDMD mRNA and protein expressions at this stage compared with CON mice. With disease progression, compared with age-matched CON mice, increased expressions of GSDMD, NLRP3, activated caspase-1 and IL-1ß were detected. Double immunofluorescence labeling revealed that NLRP3, caspase-1, IL-1ß positive signals mainly localized in ventral horn neurons at pre- and early-symptomatic stages. From symptomatic stage to late-symptomatic stage, robust positive signals were co-expressed in reactive astrocytes and microglia. CONCLUSIONS: Early activation of the canonical NLRP3 inflammasome induced pyroptosis in ventral horn neurons, which may participate in motor neuron degeneration and initiate neuroinflammatory processes during ALS progression.


Assuntos
Esclerose Lateral Amiotrófica , Inflamassomos , Esclerose Lateral Amiotrófica/genética , Animais , Caspases , Modelos Animais de Doenças , Inflamassomos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Superóxido Dismutase , Superóxido Dismutase-1/genética
6.
Biochem Biophys Res Commun ; 577: 45-51, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34507064

RESUMO

Liver cancer is one of the most common malignancies that is difficult to treat due to late diagnosis and chemo-resistance. In the present study, we developed and validated a cell based split nanoLuc biosensor to monitor the Apaf1-Apaf1 interactions in response to apoptosis-inducing drugs such as cisplatin. We showed that the activity of split nanoLuc is reconstituted only in response to apoptotic inducer, cisplatin and in a dose-dependent manner. Apaf1 mutants which were unable to oligomerize failed to recover nanoLuc activity while constitutively active variant increased the nanoLuc activity. Generation of Apaf1 knockout HepG2 and treatment with cisplatin showed dramatic reduction in cell death suggesting that cisplatin mainly targets liver cancer cells through apoptosis. As the natural products are potent sources of compounds for adjuvant therapy, we screened a collection of natural products and identified lentinan as an inducer of apoptosome formation, a key step for induction of apoptosis. Lentinan is a polysaccharide with antitumor, pro-apoptotic properties that functions with poorly understood mechanisms. Lentinan was shown to have cytotoxic effects with the IC50 of 650 µM. Sub-lethal lentinan concentration doubled the nanoLuc activity when co-treated with cisplatin. We also showed that lentinan hugely reduced the dose of cisplatin to induce certain amount of death and that lentinan co-treatment with cisplatin enhanced the Apaf1 transcription in HepG2 cells while lentinan or cisplatin alone failed to alter the transcription. In addition, lentinan and cisplatin co-treatment induced mitochondrial depolarization. This suggested that lentinan combinatorial therapy with cisplatin engaged a different signalling pathway to kill the liver cancer cells and that adjuvant therapy with lentinan can reduce the dose of cisplatin and thus reduce the possibility of chemo-resistance.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Técnicas Biossensoriais/métodos , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Apoptose/genética , Fator Apoptótico 1 Ativador de Proteases/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Cisplatino/administração & dosagem , Sinergismo Farmacológico , Células Hep G2 , Humanos , Lentinano/administração & dosagem , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Mutação
7.
Histochem Cell Biol ; 154(2): 231-243, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32333091

RESUMO

Aberrant microRNA (miRNA) expression is a central hallmark of hepatocellular carcinoma (HCC) and identification of the mechanisms underlying the miRNA actions should provide invaluable resource for revealing the molecular basis of different malignant behaviors in HCC. Previous high-throughput analysis has identified miR-767-5p as a unique miRNA signature of HCC, but the biological relevance and corresponding molecular basis of miR-767-5p in HCC is still in its infancy. The current study was, therefore, designed to elucidate whether changes in miR-767-5p expression levels affect HCC pathogenesis, and to further identify the putative targets. miR-767-5p expression was observed to be upregulated by ~ 3.7-fold in surgical HCC specimens as compared to that in adjacent normal hepatic tissues, and this up-regulation trend correlated well to disease progression and predicted a poor prognosis in HCC patients. Functionally, miR-767-5p-overexpressing cells had a significantly higher proliferative, migratory, and invasive potential, and exhibited an enhanced anchorage-dependent clonogenesis and a tumor formation potential in vivo. Mechanistically, PMP22, a core component of integral membrane glycoprotein of peripheral nervous system myelin, was further identified as a direct down-stream target of miR-767-5p in HCC cells. Conversely, stable ectopic expression of PMP22 abrogated the promoting effects of miR-767-5p on HCC aggressive phenotype. Collectively, the available data suggest that as a potent oncomiR, miR-767-5p actions along HCC progression are in part mediated by its function as a posttranscriptional repressor of PMP22 signaling.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , MicroRNAs/metabolismo , Animais , Carcinoma Hepatocelular/patologia , Ciclo Celular , Linhagem Celular , Proliferação de Células , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Transdução de Sinais/genética , Cicatrização
8.
Cell Biol Int ; 44(11): 2344-2356, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32808701

RESUMO

Ferroptosis is a specific iron-dependent cell death form that can induce the production of lipid peroxide, but the roles of circular RNAs (circRNAs) in ferroptosis are completely unaware. Circ-interleukin-4 receptor (circIL4R) was reported to express highly in hepatocellular carcinoma (HCC). This study focused on the function of circIL4R dysregulation in tumor progression and ferroptosis of HCC, as well as its molecular mechanism. The quantitative real-time polymerase chain reaction was implemented for measuring RNA expression. Cell proliferation and survival were evaluated using 3-(4,5-dimethylthiazol-2-y1)-2,5-diphenyl tetrazolium bromide. Apoptotic cells were detected via flow cytometry. The quantification of protein expression was executed through western blotting analysis. The target binding was assessed via the dual-luciferase reporter, RNA immunoprecipitation, and RNA pull-down assays. The experiment in vivo was performed using a xenograft model. CircIL4R was abnormally overexpressed in HCC tissues and cells. CircIL4R knockdown impeded oncogenesis and expedited ferroptosis of HCC cells. CircIL4R could directly sponge microRNA-541-3p (miR-541-3p) and miR-541-3p inhibition mitigated the effects of circIL4R knockdown on HCC cells. CircIL4R acted as a miR-541-3p sponge to regulate its target glutathione peroxidase 4 (GPX4). GPX4 upregulation relieved the miR-541-3p-induced tumor inhibition and ferroptosis aggravation. CircIL4R played an oncogenic role in HCC via the miR-541-3p/GPX4 axis in vivo. Our data suggested that circIL4R served for a tumor promoter and ferroptosis inhibitor in HCC by the miR-541-3p/GPX4 network.


Assuntos
Carcinoma Hepatocelular/genética , RNA Circular/genética , Receptores de Interleucina-4/genética , Apoptose/genética , Carcinogênese/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Ferroptose/genética , Regulação Neoplásica da Expressão Gênica/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , MicroRNAs/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , RNA Circular/metabolismo , RNA Longo não Codificante/genética , Receptores de Interleucina-4/metabolismo
9.
Biotechnol Lett ; 42(12): 2735-2747, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32856218

RESUMO

Circular RNAs (circRNAs) have been verified to have essential regulatory roles in diverse human cancers, including hepatocellular carcinoma (HCC). In this study, we aimed to explore the roles of circ_0001445 in HCC. Herein, circ_0001445 was decreased and miR-942-5p was increased in HCC tissues and cells. Circ_0001445 overexpression or miR-942-5p inhibition repressed cell cycle process, migration, invasion, epithelial-mesenchymal transition and glycolysis in HCC cells. Mechanistically, circ_0001445 could promote ALX4 expression through targeting miR-942-5p. Moreover, miR-942-5p overexpression reversed the inhibitory effect of circ_0001445 on HCC cell progression. The effect of miR-942-5p on HCC cell development was rescued following the elevation of ALX4. In addition, circ_0001445 overexpression restrained tumorigenesis in vivo. In conclusion, circ_0001445 played a negative role in HCC progression by modulating miR-942-5p/ALX4 axis, which might provide a novel target for HCC therapy.


Assuntos
Carcinoma Hepatocelular/genética , Proteínas de Ligação a DNA/genética , Neoplasias Hepáticas/genética , MicroRNAs/genética , RNA Circular/genética , Fatores de Transcrição/genética , Animais , Carcinogênese/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Xenoenxertos , Humanos , Neoplasias Hepáticas/patologia , Masculino , Camundongos
10.
Tumour Biol ; 37(1): 1289-97, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26289845

RESUMO

The Forkhead box M1 (FoxM1) transcription factor plays crucial roles in multiple biological processes, including cell proliferation, differentiation, migration, and transformation. Recent studies have reported that aberrant expression of FoxM1 was found in a variety of human cancers. However, the expression pattern of FoxM1 and its clinical significance in human hepatocellular carcinoma (HCC) have not been well characterized to date. In this study, the expression of FoxM1 was evaluated in 46 pairs of human HCC, the adjacent non-tumorous liver tissues, and 12 pairs of normal liver tissues by immumohistochemistry. FoxM1 expression was upregulated in the HCC (76.09 %) compared with non-tumorous liver tissues (39.13 %) and normal liver tissues (8.33 %) (P < 0.05). FoxM1 expression was significantly associated with tumor stage, tumor size, tumor number, integrality of tumor encapsulation, tumor thrombus, and AFP level (P < 0.05). Functionally, enforced expression of FoxM1 in HCC cell line (HHCC) remarkably enhanced cell proliferation in vitro and in vivo. Further analysis of cell cycle-related molecules showed that FoxM1 overexpression increased expressions of cyclin B1 and cyclin D1 but reduced expressions of p27(Kip1) and p21(Cip1). Our findings suggest that FoxM1 overexpression promotes HCC cell proliferation by cell cycle regulation, which is a potential target for hepatocellular carcinoma therapy.


Assuntos
Carcinoma Hepatocelular/metabolismo , Proteína Forkhead Box M1/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/metabolismo , Idoso , Animais , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Feminino , Perfilação da Expressão Gênica , Células Hep G2 , Humanos , Imuno-Histoquímica , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Pessoa de Meia-Idade , Regulação para Cima
11.
Acta Pharmacol Sin ; 36(2): 241-51, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25557114

RESUMO

AIM: Forkhead box M1 (FoxM1) is a transcription factor that plays important roles in the pathogenesis and progression of human cancers, including hepatocellular carcinoma (HCC). The aim of this study was to examine the involvement of FoxM1 in the anti-cancer action of sorafenib, a multikinase inhibitor, in human HCC cells. METHODS: HCC cell lines HepG2 and HuH-7 were tested. Cell viability was examined using MTT assay and cell invasion was determined with Transwell migration assay. The relevant mRNA expression was determined with RT-PCR, and the proteins were detected using Western blotting and immunofluorescence assays. RNA interference was used to modify the expression of p53 and FoxM1. HuH-7 cell line xenograft mice were used for in vivo study, which were treated with sorafenib (40 mg/kg, po) daily for 3 weeks. RESULTS: Sorafenib (2-20 µmol/L) inhibited the proliferation of the cells in dose- and time-dependent manners with an IC50 value of nearly 6 µmol/L at 48 h. Sorafenib (6 µmol/L) markedly suppressed the cell invasion. Furthermore, sorafenib (2-6 µmol/L) dose-dependently decreased the expression of FoxM1, MMP-2, and Ki-67, and up-regulated that of p53 in the cells. Silencing p53 abolished the decrease of FoxM1 and increase of p53 in sorafenib-treated cells. Silencing FoxM1 significantly reduced the expression of MMP-2 and Ki-67, and enhanced the anti-proliferation action of sorafenib in the cells, whereas overexpression of FoxM1 increased the expression of MMP-2 and Ki-67, and abrogated the anti-proliferation action of sorafenib. In the xenograft mice, sorafenib administration decreased the tumor growth by 40%, and markedly increased the expression of p53, and decreased the expression of FoxM1, MMP-2, and Ki-67 in tumor tissues. CONCLUSION: Sorafenib inhibits HCC proliferation and invasion by inhibiting MMP-2 and Ki-67 expression due to up-regulation of P53 and suppressing FoxM1.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Fatores de Transcrição Forkhead/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Niacinamida/análogos & derivados , Compostos de Fenilureia/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/efeitos dos fármacos , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proteína Forkhead Box M1 , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Knockout , Camundongos Nus , Invasividade Neoplásica/patologia , Niacinamida/farmacologia , Sorafenibe
12.
Oncol Rep ; 51(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38426536

RESUMO

The aim of the present study was to explore the association between N6­methyladenosine (m6A) modification regulatory gene­related long noncoding (lnc)RNA RP1­228H13.5 and cancer prognosis through bioinformatics analysis, as well as the impact of RP1­228H13.5 on cell biology­related behaviors and specific molecular mechanisms. Bioinformatics analysis was used to construct a risk model consisting of nine genes. This model can reflect the survival time and differentiation degree of cancer. Subsequently, a competing endogenous RNA network consisting of 3 m6A­related lncRNAs, six microRNAs (miRs) and 201 mRNAs was constructed. A cell assay confirmed that RP1­228H13.5 is significantly upregulated in liver cancer cells, which can promote liver cancer cell proliferation, migration and invasion, and inhibit liver cancer cell apoptosis. The specific molecular mechanism may be the regulation of the expression of zinc finger protein interacting with K protein 1 (ZIK1) by targeting the downstream hsa­miR­205. Further experiments found that the m6A methyltransferase 14, N6­adenosine­methyltransferase subunit mediates the regulation of miR­205­5p expression by RP1­228H13.5. m6A methylation regulatory factor­related lncRNA has an important role in cancer. The targeting of hsa­miR­205 by RP1­228H13.5 to regulate ZIK1 may serve as a potential mechanism in the occurrence and development of liver cancer.


Assuntos
Adenina/análogos & derivados , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Humanos , MicroRNAs/genética , Neoplasias Hepáticas/genética , Metiltransferases/genética , RNA Longo não Codificante/genética , Proteínas Associadas aos Microtúbulos
13.
J Ethnopharmacol ; 321: 117530, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043753

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Gan-song Yin is derived from the classic ancient prescription " Gan-song pill " for the treatment of wasting-thirst in Ningxia combined with the characteristic "fragrant medicine". It is clinically used for the treatment of early renal fibrosis caused by diabetic nephropathy. Previous studies have shown that it has a good effect and great potential in the prevention and treatment of diabetic nephropathy, but its mechanism research is still limited. AIM OF THE STUDY: To investigate the mechanism of GSY to improve DN by interfering with miR-21-5p and glycolipid metabolism in adipocyte exosomes using 3T3-L1 and TCMK-1 co-culture system. MATERIALS AND METHODS: The co-culture system of 3T3-L3 and TCMK-1 was established, the IR model was established, and the stability, lipid drop change, glucose consumption, triglyceride content, cell viability, cell cycle and apoptosis level, protein content and mRNA expression of the IR model were detected. RESULTS: GSY inhibited 3T3-L1 activity, increased glucose consumption and decreased TG content. Decreased TCMK-1 cell viability, inhibited apoptosis, cell cycle arrest occurred in G0/G1 phase and S phase. Adipocyte IR model and co-culture system were stable within 48 h. After GSY intervention, lipid droplet decomposition and glucose consumption increased. The TG content of adipocytes increased, while the TG content of co-culture system decreased. GSY can regulate the expression of TGF-ß1/SMAD signaling pathway protein in IR state. After GSY intervention, the expression of miR-21-5p was increased in 3T3-L1 and Exo cells, and decreased in TCMK-1 cells. CONCLUSIONS: GSY can regulate TGF-ß1/SMAD signaling pathway through the secretion of miR-21-5p from adipocytes, protect IR TCMK-1, regulate the protein and mRNA expression levels of PPARγ, GLUT4, FABP4, and improve glucose and lipid metabolism.


Assuntos
Nefropatias Diabéticas , Exossomos , MicroRNAs , Humanos , Fator de Crescimento Transformador beta1/metabolismo , Exossomos/metabolismo , Nefropatias Diabéticas/metabolismo , Adipócitos , Proliferação de Células , Células Epiteliais/metabolismo , Glucose/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo
14.
Aging (Albany NY) ; 16(4): 3363-3385, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38349866

RESUMO

BACKGROUND: Based on bioinformatics research of NUDT21 in pan-cancer, we aimed to clarify the mechanism of NUDT21 in HHNC by experiment. METHODS: The correlation between differential expression of NUDT21 in pan-cancer and survival prognosis, genomic instability, tumor stemness, DNA repair, RNA methylation and with immune microenvironment were analyzed by the application of different pan-cancer analysis web databases. In addition, immunohistochemistry staining and genetic detection of NUDT21 in HHNCC tumor tissues by immunohistochemistry and qRT-PCR. Then, through in vitro cell experiments, NUDT21 was knocked down by lentivirus to detect the proliferation, cycle, apoptosis of FaDu and CNE-2Z cells, and finally by PathScan intracellular signaling array reagent to detect the apoptotic protein content. RESULTS: Based on the pan-cancer analysis, we found that elevated expression of NUDT21 in most cancers was significantly correlated with TMB, MSI, neoantigens and chromosomal ploidy, and in epigenetics, elevated NUDT21 expression was strongly associated with genomic stability, mismatch repair genes, tumor stemness, and RNA methylation. Based on immunosuppressive score, we found that NUDT21 plays an essential role in the immunosuppressive environment by suppressing immune checkpointing effect in most cancers. In addition, using HHNSCC as a study target, PCR and pathological detection of NUDT21 in tumor tissues was significantly increased than that in paracancerous normal tissues. In vitro cellular assays, silencing NUDT21 inhibited proliferation and promoted apoptosis in FaDu and CNE-2Z cells, and blocked the cell cycle in the G2/M phase. Therefore, the experiments confirmed that NUDT21 promotes the proliferation of FaDu by suppressing the expression of apoptotic.


Assuntos
Apoptose , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Divisão Celular , Apoptose/genética , Ciclo Celular/genética , Instabilidade Genômica , Microambiente Tumoral
15.
Heliyon ; 10(10): e31452, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38831826

RESUMO

Background: Polyphyllin is a class of saponins extracted from Paris polyphylla rhizomes and has been used in clinical application in China for more than 2000 years. However, the mechanism for treating gastric cancer (GC) is still unclear. This study was designed to predict the targets and mechanisms of total Polyphyllin from Paris polyphylla rhizomes for the treatment of GC. Method: Firstly, PubChem and Swiss Target Prediction databases were utilized to collect the 12 ingredients of total Polyphyllin from Paris polyphylla rhizomes and their targets. GC-related genes were obtained from the GEO database. Then the intersecting targets to all these molecules that identified using Venny. Secondly, the intersecting targets were imported into STRING platform for protein-protein interaction (PPI) network. Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted in DAVID website. In addition, the GEPIA was applied to perform the expression levels, transcript levels, staging, and overall survival of hub genes. In addition, we used AutoDock Vina to evaluate binding affinity of molecular docking between key ingredients and anti-GC targets. In vitro cell experiments, we detected the cell viability of gastric cancer cells at 24, 36, and 48 h using CCK-8 assay. The G0/G1 of cell cycle and apoptosis were detected by flow cytometry. Finally, quantitative real time polymerase chain reaction (qRT-PCR) was used to detect the level of hub genes, and Western blot was used to detect the changes of PI3K/Akt signal pathway. Results: Firstly, we identified 12 ingredients and 286 targets of total Polyphyllin. A total of 2653 GC-related differentially expressed genes (DEGs) were collected, including 1366 up-regulated genes and 1287 down-regulated genes. Moreover, 45 targets were obtained after intersection. Secondly, results of the GO enrichment suggested that these genes were closely related to cell proliferation, migration and aging. KEGG analysis suggested that Polyphyllin in GC therapy were mostly regulated by multiple pathways, including the pathways in cancer, calcium signaling pathway, Rap1 signaling pathway, phospholipase D signaling pathway, etc. In addition, GEPIA results exhibited that PDGFRB, KIT, FGF1, GLI1, F2R, and HIF1A were associated with GC progression, stage, and survival. Besides, the molecular docking results further confirmed that the binding energy of Polyphyllin Ⅲ with HIF1A was minimal. In vitro cell experiments, Polyphyllin Ⅲ inhibited the cell viability of gastric cancer cells, blocked the cell cycle G0/G1 phase, and induced cell apoptosis. In addition, Polyphyllin Ⅲ down-regulated the mRNA levels of PDGFRB, KIT, FGF1, GLI1, F2R, and HIF1A, and regulated the PI3K/Akt signal pathway. Conclusions: The results revealed that total Polyphyllin treated GC through multiple targets, multiple channels, and multiple pathways. In addition, Polyphyllin Ⅲ played an anti-gastric cancer role by inhibiting the proliferation of gastric cancer.

16.
Medicine (Baltimore) ; 103(10): e36303, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457601

RESUMO

To investigate the mechanism of action of Banxia-Shengjiang drug pair on the inhibition of gastric cancer (GC) using network pharmacology and bioinformatics techniques. The action targets of the Banxia (Pinellia ternata (Thunb.) Makino) -Shengjiang (Zingiber officinale Roscoe) drug pair obtained from the TCMSP database were intersected with differentially expressed genes (DEGs) and GC-related genes, and the intersected genes were analyzed for pathway enrichment to identify the signaling pathways and core target genes. Subsequently, the core target genes were analyzed for clinical relevance gene mutation analysis, methylation analysis, immune infiltration analysis and immune cell analysis. Finally, by constructing the PPI network of hub genes and corresponding active ingredients, the key active ingredients of the Banxia-Shengjiang drug pair were screened for molecular docking with the hub genes. In this study, a total of 557 target genes of Banxia-Shengjiang pairs, 7754 GC-related genes and 1799 DEGs in GC were screened. Five hub genes were screened, which were PTGS2, MMP9, PPARG, MMP2, and CXCR4. The pathway enrichment analyses showed that the intersecting genes were associated with RAS/MAPK signaling pathway. In addition, the clinical correlation analysis showed that hub genes were differentially expressed in GC and was closely associated with immune infiltration and immunotherapy. The results of single nucleotide variation (SNV) and copy number variation (CNV) indicated that mutations in the hub genes were associated with the survival of gastric cancer patients. Finally, the PPI network and molecular docking results showed that PTGS2 and MMP9 were potentially important targets for the inhibition of GC by Banxia-Shengjiang drug pair, while cavidine was an important active ingredient for the inhibition of GC by Banxia-Shengjiang drug pair. Banxia-Shengjiang drug pair may regulate the immune function and inhibit GC by modulating the expression of core target genes such as RAS/MAPK signaling pathway, PTGS2 and MMP9.


Assuntos
Metaloproteinase 9 da Matriz , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Ciclo-Oxigenase 2 , Variações do Número de Cópias de DNA , Simulação de Acoplamento Molecular
17.
Oncol Res ; 20(8): 341-50, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23924854

RESUMO

Considerable effort has been made in elucidating the appropriate biomarkers and the mechanism and functional significance of these biomarkers in hepatocellular carcinoma (HCC). Glycoprotein nonmetastatic B (GPNMB) overexpression occurs in cutaneous melanomas and breast cancer, and it is an attractive candidate for cancer therapy. However, little is known about the expression and regulation of GPNMB in HCC. In this study, we investigated the expression of GPNMB in HCC histochemically and tested the regulation effects of the epithelial cell adhesion molecule (EpCAM) and colony-stimulating factor (CSF-1) on the expression of GPNMB in HCC cells. Our results demonstrated that GPNMB levels were significantly enhanced in HCC compared with adjacent normal liver tissues. In HCC cells, GPNMB expression was regulated by EpCAM and CSF-1 partly through their common downstream product c-myc. Taken together, these results suggest that GPNMB, the expression of which was regulated in HCC cells by the highly coordinated function of various proteins, may be a potential target for HCC therapy.


Assuntos
Antígenos de Neoplasias/fisiologia , Carcinoma Hepatocelular/metabolismo , Moléculas de Adesão Celular/fisiologia , Neoplasias Hepáticas/metabolismo , Fator Estimulador de Colônias de Macrófagos/fisiologia , Glicoproteínas de Membrana/fisiologia , Carcinoma Hepatocelular/terapia , Molécula de Adesão da Célula Epitelial , Células Hep G2 , Humanos , Neoplasias Hepáticas/terapia , Glicoproteínas de Membrana/análise , Proteínas Proto-Oncogênicas c-myc/fisiologia , Regulação para Cima
18.
Acta Pharmacol Sin ; 34(9): 1217-28, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23811723

RESUMO

AIM: To elucidate the molecular mechanisms underlying the immunosuppressive effects of emodin isolated from Rheum palmatum L. METHODS: Human T cells were isolated from the peripheral venous blood of 10 healthy adult donors. Cell viability was analyzed with MTT assay. AO/EB and Annexin V/PI staining and DNA damage assay were used to detect cell apoptosis. Fluorescence staining was used to detect the levels of ROS, the mitochondrial membrane potential and intracellular Ca(2+). Colorimetry was used to detect the levels of MDA and total SOD and GSH/GSSG ratio. The expression and activity of caspase-3, -4, and -9 were detected with Western blotting and a fluorometric assay. Western blotting was also used to detect the expression of Bcl-2, Bax, cytochrome C, and endoplasmic reticulum (ER) markers. RESULTS: Emodin (1, 10, and 100 µmol/L) inhibited the growth of human T cells and induced apoptosis in dose- and time dependent manners. Emodin triggered ER stress and significantly elevated intracellular free Ca(2+) in human T cells. It also disrupted mitochondrial membrane potential, and increased cytosolic level of cytochrome C, and the levels of activated cleavage fragments of caspase-3, -4, and -9 in human T cells. Furthermore, emodin significantly increased the levels of ROS and MDA, inhibited both SOD level and GSH/GSSG ratio in human T cells, whereas co-incubation with the ROS scavenger N-acetylcysteine (NAC, 20 µmol/L) almost completely blocked emodin-induced ER stress and mitochondrial dysfunction in human T cells, and decreased the caspase cascade-mediated apoptosis. CONCLUSION: Emodin exerts immunosuppressive actions at least partly by inducing apoptosis of human T cells, which is triggered by ROS-mediated ER stress and mitochondrial dysfunction.


Assuntos
Apoptose/efeitos dos fármacos , Emodina/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T/efeitos dos fármacos , Apoptose/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Estresse do Retículo Endoplasmático/fisiologia , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/fisiologia , Mitocôndrias/fisiologia , Linfócitos T/fisiologia
19.
Cancer Biother Radiopharm ; 38(6): 371-379, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34287012

RESUMO

Objective: In this study, the authors identified miR-193a-3p as a tumor-suppressing microRNA, and its effects on the chemosensitivity to trametinib in gallbladder carcinoma (GBC) were evaluated. Materials and Methods: The levels of miR-193a-3p in clinical GBC tissues and GBC cells were determined by quantitative real-time polymerase chain reaction. The protein levels of KRAS, ERK, and phosphorylated ERK (p-ERK) were examined by Western blot. Dual-luciferase reporter assays were performed to confirm the interaction between miR-193a-3p and KRAS. The effect of miR-193a-3p knockdown or overexpression on the malignant behaviors and chemosensitivity of GBC was determined by 3-(4,5-dimethlthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide and flow cytometry assays in vitro and further examined in a xenograft model. Results: The levels of miR-193a-3p were significantly decreased in GBC cell lines, especially with KRAS mutations. In addition, miR-193a-3p overexpression retarded cell proliferation of GBC, but induced cell apoptosis. Moreover, miR-193a-3p overexpression significantly improved the chemosensitivity of GBC to trametinib both in in vitro assays and in vivo xenograft mouse model. Further mechanisms disclosed that KRAS was a target of miR-193a-3p and levels of p-ERK were increased by treatment with miR-193a-3p inhibitor in GBC. Conclusions: These data suggested that miR-193a-3p enhanced the chemosensitivity to trametinib in GBC with wild-type KRAS or KRAS mutations by directly targeting KRAS and finally downregulated ERK signaling.


Assuntos
Neoplasias da Vesícula Biliar , MicroRNAs , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias da Vesícula Biliar/tratamento farmacológico , Neoplasias da Vesícula Biliar/genética , Neoplasias da Vesícula Biliar/patologia , MicroRNAs/metabolismo , Piridonas/farmacologia , Piridonas/uso terapêutico , Proliferação de Células/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
20.
Medicine (Baltimore) ; 102(47): e36196, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38013385

RESUMO

The study aimed to explore the key targets and molecular mechanisms of Dahuang-Tusizi drug pair (DTDP) in the treatment of diabetes nephropathy (DN) based on the GEO database by using network pharmacology combined with molecular docking and immune infiltration. The active components of the DTDP were screened using the Traditional Chinese Medicine Systems Pharmacology database and the Swiss Target Prediction database. The differential genes of DN were retrieved from GEO databases. Next, the intersecting targets of drug and disease were imported into the String database for protein-protein interactions network analysis, and the core targets were identified through topological analysis. Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed with the help of the Metascape database and gene set enrichment analysis database. Subsequently, molecular docking was performed to verify the binding activity of the key component and the key target. The Nephroseq V5 database was used to verify the clinical relevance of DN and core genes. Finally, the Using CIBERSORT Algorithm to analyze the immune Infiltration of DN Gene Chip. The network analysis showed that 25 active ingredients of DTDP were associated with 22 targets in DN. The key active ingredients (Sesamin, quercetin, EUPATIN, matrine, beta-sitosterol, isorhamnetin, etc.) and the core targets (JUN, EGF, CD44, FOS, KDR, CCL2, PTGS2, and MMP2) were further identified. Enrichment analysis revealed signaling pathways including TNF, MAPK, and IL-17 signaling pathway. Molecular docking results showed that there was a strong affinity between the key components and core targets. The results of immune infiltration found that the proportion of macrophages in DN tissues was significantly increased. Our findings demonstrated that the characteristics of DTDP in treating DN are "multiple components, multiple targets and multiple pathways." We predicted that DTDP may inhibit inflammation related pathways by regulating key genes, reducing macrophage infiltration. Thus, inhibiting inflammatory response to reduce glomerular damage and delay the development of DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Medicamentos de Ervas Chinesas , Humanos , Farmacologia em Rede , Simulação de Acoplamento Molecular , Nefropatias Diabéticas/tratamento farmacológico , Glomérulos Renais , Algoritmos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA