Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(44): e2303836120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37871213

RESUMO

Transcriptional divergence of duplicated genes after whole genome duplication (WGD) has been described in many plant lineages and is often associated with subgenome dominance, a genome-wide mechanism. However, it is unknown what underlies the transcriptional divergence of duplicated genes in polyploid species that lack subgenome dominance. Soybean is a paleotetraploid with a WGD that occurred 5 to 13 Mya. Approximately 50% of the duplicated genes retained from this WGD exhibit transcriptional divergence. We developed accessible chromatin region (ACR) datasets from leaf, flower, and seed tissues using MNase-hypersensitivity sequencing. We validated enhancer function of several ACRs associated with known genes using CRISPR/Cas9-mediated genome editing. The ACR datasets were used to examine and correlate the transcriptional patterns of 17,111 pairs of duplicated genes in different tissues. We demonstrate that ACR dynamics are correlated with divergence of both expression level and tissue specificity of individual gene pairs. Gain or loss of flanking ACRs and mutation of cis-regulatory elements (CREs) within the ACRs can change the balance of the expression level and/or tissue specificity of the duplicated genes. Analysis of DNA sequences associated with ACRs revealed that the extensive sequence rearrangement after the WGD reshaped the CRE landscape, which appears to play a key role in the transcriptional divergence of duplicated genes in soybean. This may represent a general mechanism for transcriptional divergence of duplicated genes in polyploids that lack subgenome dominance.


Assuntos
Evolução Molecular , Glycine max , Glycine max/genética , Glycine max/metabolismo , Genoma , Genes Duplicados/genética , Sequência de Bases , Duplicação Gênica , Genoma de Planta/genética
2.
Nature ; 565(7741): 654-658, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30675060

RESUMO

Diffuse gliomas are the most common malignant brain tumours in adults and include glioblastomas and World Health Organization (WHO) grade II and grade III tumours (sometimes referred to as lower-grade gliomas). Genetic tumour profiling is used to classify disease and guide therapy1,2, but involves brain surgery for tissue collection; repeated tumour biopsies may be necessary for accurate genotyping over the course of the disease3-10. While the detection of circulating tumour DNA (ctDNA) in the blood of patients with primary brain tumours remains challenging11,12, sequencing of ctDNA from the cerebrospinal fluid (CSF) may provide an alternative way to genotype gliomas with lower morbidity and cost13,14. We therefore evaluated the representation of the glioma genome in CSF from 85 patients with gliomas who underwent a lumbar puncture because they showed neurological signs or symptoms. Here we show that tumour-derived DNA was detected in CSF from 42 out of 85 patients (49.4%) and was associated with disease burden and adverse outcome. The genomic landscape of glioma in the CSF included a broad spectrum of genetic alterations and closely resembled the genomes of tumour biopsies. Alterations that occur early during tumorigenesis, such as co-deletion of chromosome arms 1p and 19q (1p/19q codeletion) and mutations in the metabolic genes isocitrate dehydrogenase 1 (IDH1) or IDH21,2, were shared in all matched ctDNA-positive CSF-tumour pairs, whereas growth factor receptor signalling pathways showed considerable evolution. The ability to monitor the evolution of the glioma genome through a minimally invasive technique could advance the clinical development and use of genotype-directed therapies for glioma, one of the most aggressive human cancers.


Assuntos
Evolução Molecular , Glioma/líquido cefalorraquidiano , Glioma/genética , Biópsia Líquida , Mutação , Genes Neoplásicos/genética , Genoma Humano/genética , Genômica , Glioblastoma/líquido cefalorraquidiano , Glioblastoma/genética , Glioblastoma/patologia , Glioma/patologia , Humanos , Gradação de Tumores
3.
Proc Natl Acad Sci U S A ; 119(48): e2215328119, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36409894

RESUMO

Super-enhancers (SEs) are exceptionally large enhancers and are recognized to play prominent roles in cell identity in mammalian species. We surveyed the genomic regions containing large clusters of accessible chromatin regions (ACRs) marked by deoxyribonuclease (DNase) I hypersensitivity in Arabidopsis thaliana. We identified a set of 749 putative SEs, which have a minimum length of 1.5 kilobases and represent the top 2.5% of the largest ACR clusters. We demonstrate that the genomic regions associating with these SEs were more sensitive to DNase I than other nonpromoter ACRs. The SEs were preferentially associated with topologically associating domains. Furthermore, the SEs and their predicted cognate genes were frequently associated with organ development and tissue identity in A. thaliana. Therefore, the A. thaliana SEs and their cognate genes mirror the functional characteristics of those reported in mammalian species. We developed CRISPR/Cas-mediated deletion lines of a 3,578-bp SE associated with the thalianol biosynthetic gene cluster (BGC). Small deletions (131-157 bp) within the SE resulted in distinct phenotypic changes and transcriptional repression of all five thalianol genes. In addition, T-DNA insertions in the SE region resulted in transcriptional alteration of all five thalianol genes. Thus, this SE appears to play a central role in coordinating the operon-like expression pattern of the thalianol BGC.


Assuntos
Arabidopsis , Triterpenos , Animais , Arabidopsis/genética , Sequências Reguladoras de Ácido Nucleico , Cromatina/genética , Mamíferos/genética
4.
BMC Genomics ; 25(1): 306, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519923

RESUMO

BACKGROUND: Poplar anthracnose, which is one of the most important tree diseases, is primarily caused by Colletotrichum gloeosporioides, which has been detected in poplar plantations in China and is responsible for serious economic losses. The characteristics of 84K poplar that have made it one of the typical woody model plants used for investigating stress resistance include its rapid growth, simple reproduction, and adaptability. RESULTS: In this study, we found that the resistance of 84K poplar to anthracnose varied considerably depending on how the samples were inoculated of the two seedlings in each tissue culture bottle, one (84K-Cg) was inoculated for 6 days, whereas the 84K-DCg samples were another seedling inoculated at the 6th day and incubated for another 6 days under the same conditions. It was showed that the average anthracnose spot diameter on 84K-Cg and 84K-DCg leaves was 1.23 ± 0.0577 cm and 0.67 ± 0.1154 cm, respectively. Based on the transcriptome sequencing analysis, it was indicated that the upregulated phenylpropanoid biosynthesis-related genes in 84K poplar infected with C. gloeosporioides, including genes encoding PAL, C4H, 4CL, HCT, CCR, COMT, F5H, and CAD, are also involved in other KEGG pathways (i.e., flavonoid biosynthesis and phenylalanine metabolism). The expression levels of these genes were lowest in 84K-Cg and highest in 84K-DCg. CONCLUSIONS: It was found that PAL-related genes may be crucial for the induced resistance of 84K poplar to anthracnose, which enriched in the phenylpropanoid biosynthesis. These results will provide the basis for future research conducted to verify the contribution of phenylpropanoid biosynthesis to induced resistance and explore plant immune resistance-related signals that may regulate plant defense capabilities, which may provide valuable insights relevant to the development of effective and environmentally friendly methods for controlling poplar anthracnose.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , China
5.
Opt Express ; 32(4): 6277-6290, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439335

RESUMO

In this study, a novel method that can detect carbon dioxide (CO2) concentration and realize temperature immunity based on only one fiber Bragg grating (FBG) is proposed. The outstanding contribution lies in solving the temperature crosstalk issue of FBG and ensuring the accuracy of detection results under the condition of anti-temperature interference. To achieve immunity to temperature interference without changing the initial structure of FBG, the optical fiber cladding of FBG and adjacent optical fiber cladding at both ends of FBG are modified by a polymer coating. Moreover, a universal immune temperature demodulation algorithm is derived. The experimental results demonstrate that the temperature response sensitivity of the improved FBG is controlled within the range of 0.00407 nm/°C. Compared with the initial FBG (the temperature sensitivity of the initial FBG is 0.04 nm/°C), it decreases by nearly 10 times. Besides, the gas response sensitivity of FBG reaches 1.6 pm/ppm and has overwhelmingly ideal linearity. The detection error results manifest that the gas concentration error in 20 groups of data does not exceed 3.16 ppm. The final reproducibility research shows that the difference in detection sensitivity between the two sensors is 0.08 pm/ppm, and the relative error of linearity is 1.07%. In a word, the proposed method can accurately detect the concentration of CO2 gas and is efficiently immune to temperature interference. The sensor we proposed has the advantages of a simple production process, low cost, and satisfactory reproducibility. It also has the prospect of mass production.

6.
Plant Cell ; 33(6): 1997-2014, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-33764459

RESUMO

Enhancers located in introns are abundant and play a major role in the regulation of gene expression in mammalian species. By contrast, the functions of intronic enhancers in plants have largely been unexplored and only a handful of plant intronic enhancers have been reported. We performed a genome-wide prediction of intronic enhancers in Arabidopsis thaliana using open chromatin signatures based on DNase I sequencing. We identified 941 candidate intronic enhancers associated with 806 genes in seedling tissue and 1,271 intronic enhancers associated with 1,069 genes in floral tissue. We validated the function of 15 of 21 (71%) of the predicted intronic enhancers in transgenic assays using a reporter gene. We also created deletion lines of three intronic enhancers associated with two different genes using CRISPR/Cas. Deletion of these enhancers, which span key transcription factor binding sites, did not abolish gene expression but caused varying levels of transcriptional repression of their cognate genes. Remarkably, the transcriptional repression of the deletion lines occurred at specific developmental stages and resulted in distinct phenotypic effects on plant morphology and development. Clearly, these three intronic enhancers are important in fine-tuning tissue- and development-specific expression of their cognate genes.


Assuntos
Arabidopsis/genética , Elementos Facilitadores Genéticos , Edição de Genes/métodos , Regulação da Expressão Gênica de Plantas , Íntrons , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Cromatina/genética , Flores/genética , Genes Reporter , Glucuronidase/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Fatores de Transcrição/genética
7.
Environ Sci Technol ; 58(1): 795-804, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38095914

RESUMO

Iron plaque, as a natural barrier between rice and soil, can reduce the accumulation of pollutants in rice by adsorption, contributing to the safe production of rice in contaminated soil. In this study, we unveiled a new role of iron plaque, i.e., producing hydroxyl radicals (·OH) by activating root-secreted oxygen to degrade pollutants. The ·OH was produced on the iron plaque surface and then diffused to the interfacial layer between the surface and the rhizosphere environment. The iron plaque activated oxygen via a successive three-electron transfer to produce ·OH, involving superoxide and hydrogen peroxide as the intermediates. The structural Fe(II) in iron plaque played a dominant role in activating oxygen rather than the adsorbed Fe(II), since the structural Fe(II) was thermodynamically more favorable for oxygen activation. The oxygen vacancies accompanied by the structural Fe(II) played an important role in oxygen activation to produce ·OH. The interfacial ·OH selectively degraded rhizosphere pollutants that could be adsorbed onto the iron plaque and was less affected by the rhizosphere environments than the free ·OH. This study uncovered the oxidative role of iron plaque mediated by its produced ·OH, reshaping our understanding of the role of iron plaque as a barrier for rice.


Assuntos
Poluentes Ambientais , Oryza , Poluentes do Solo , Ferro/química , Poluentes Ambientais/análise , Radical Hidroxila/análise , Radical Hidroxila/metabolismo , Rizosfera , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Solo/química , Compostos Ferrosos/análise , Compostos Ferrosos/metabolismo , Oxigênio/análise
8.
Phytopathology ; 114(8): 1832-1842, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38748933

RESUMO

Colletotrichum gloeosporioides is the causal agent of poplar anthracnose, which induces major economic losses and adversely affects the ecosystem services of poplar forests. The appressorium serves as a penetration structure for many pathogenic fungi, including C. gloeosporioides. The production of mucilage and the formation of penetration pegs are critically important for the appressorium-mediated penetration of host tissues. We previously found that CgPmk1 is a key protein involved in appressorium formation, penetration, and pathogenicity. Although CgSte12, which is a transcription factor that functions downstream of CgPmk1, regulates the formation of penetration pegs, its role in C. gloeosporioides appressorium development and pathogenicity has not been elucidated. Here, we developed C. gloeosporioides CgSTE12 mutants and characterized the molecular and cellular functions of CgSTE12. The results showed that mycelial growth and morphology were not affected in the CgSTE12 knockout mutants, which produced normal melanized appressoria. However, these mutants had less mucilage secreted around the appressoria, impaired appressorial cone formation, and the inability to form penetration pores and pegs, which ultimately led to a significant loss of pathogenicity. Our comparative transcriptome analysis revealed that CgSte12 controls the expression of genes involved in appressorium development and function, including genes encoding cutinases, NADPH oxidase, spermine biosynthesis-related proteins, ceramide biosynthesis-related proteins, fatty acid metabolism-related proteins, and glycerophospholipid metabolism-related proteins. Overall, our findings indicate that CgSte12 is a critical regulator of appressorium development and affects C. gloeosporioides pathogenicity by modulating the structural integrity of appressoria.


Assuntos
Colletotrichum , Proteínas Fúngicas , Doenças das Plantas , Populus , Fatores de Transcrição , Colletotrichum/patogenicidade , Colletotrichum/genética , Doenças das Plantas/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Populus/microbiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Virulência , Regulação Fúngica da Expressão Gênica , Mutação
9.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37108573

RESUMO

Anthracnose of poplar caused by Colletotrichum gloeosporioides is a leaf disease that seriously affects poplar growth. The pathogen invades the host in the form of adherent cells, which generate turgor pressure through the metabolism of intracellular substances prior to penetrating the epidermis of poplar leaves. In this study, the expansion-related pressure of the mature appressorium of the wild-type C. gloeosporioides was approximately 13.02 ± 1.54 MPa at 12 h, whereas it was 7.34 ± 1.23 MPa and 9.34 ± 2.22 MPa in the melanin synthesis-related gene knockout mutants ΔCgCmr1 and ΔCgPks1, respectively. The CgCmr1 and CgPks1 genes were highly expressed at 12 h in the wild-type control, implying that the DHN melanin biosynthesis pathway may play an important role in the mature appressorium stage. The transcriptome sequencing analysis indicated that the upregulated melanin biosynthesis genes in C. gloeosporioides, such as CgScd1, CgAyg1, CgThr1, CgThr2, and CgLac1, are involved in specific KEGG pathways (i.e., fatty acid biosynthesis, fatty acid metabolism, and biotin metabolism). Therefore, we speculate that the melanin synthesis-related genes and fatty acid metabolism pathway genes contribute to the regulation of the turgor pressure in the mature C. gloeosporioides appressorium, ultimately leading to the formation of infection pegs that enter plant tissues. These observations may reflect the co-evolution of C. gloeosporioides and its host.


Assuntos
Colletotrichum , Transcriptoma , Melaninas/metabolismo , Perfilação da Expressão Gênica , Ácidos Graxos/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
10.
Environ Geochem Health ; 45(8): 5639-5654, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32935252

RESUMO

To assess the effect of zinc smelting on environment and human health, the concentration, distribution, sources and health risk of eight heavy metals (Pb, Cd, Cu, Zn, Cr, Ni, Mn, and As) were investigated from agricultural soils in a long-term Zn smelting area in Guizhou, China. Different health risk assessment methods and models were used to access health risks. The results show that the concentrations of all the eight heavy metals were significantly higher than their corresponding background values (p < 0.05). Pb, Cd, and As were the most contaminated elements, with 93.6%, 90.3% and 48.4% of agricultural soil samples higher than the risk screening values, respectively. Statistical analysis indicated that Pb, Cd, Cu, Zn, Mn, and As could be mainly accounted for Zn smelting activities, while Cr and Ni may be generally more controlled by natural sources. The geo-accumulation index (Igeo) suggested that the most seriously contaminating heavy metals were Pb, Cd, and Zn, with 96.8%, 90.3%, and 96.8%, respectively, of the soil samples classified as moderately to extremely contaminated. The non-carcinogenic health risk associated with Pb, Cd and As were observed for children, meanwhile, the carcinogenic risk due to As was found for both adults and children. Regardless of cancer risk or non-cancer risk, local children are at greater risk than adults. Therefore, Pb, Cd and As play the leading role to cause potential health risks in the study area, which need to be paid more attention and also effective control measures should be taken.


Assuntos
Metais Pesados , Poluentes do Solo , Adulto , Criança , Humanos , Zinco/toxicidade , Zinco/análise , Solo , Cádmio/análise , Chumbo/análise , Monitoramento Ambiental/métodos , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Metais Pesados/toxicidade , Metais Pesados/análise , Medição de Risco , China
11.
Phytopathology ; 112(10): 2198-2206, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35578737

RESUMO

Poplar anthracnose caused by Colletotrichum gloeosporioides is one of the most important diseases widely distributed in poplar-growing areas in China, causing serious economic and ecological losses. In this study, three poplar species showed different resistance to poplar anthracnose: Populus × canadensis was resistant, Populus tomentosa was susceptible, and P. × beijingensis showed intermediate resistance. However, it remains uncertain whether phenolic compounds in poplar are involved in this resistance. Therefore, we determined the concentrations of phenolic compounds and their antifungal activity. Before and after the C. gloeosporioides inoculation, 20 phenolic compounds were detected in P. × canadensis and the number increased from 12 to 14 in P. × beijingensis but decreased from seven to four in P. tomentosa. Thus, phenolic compounds may be positively correlated with the degree of disease resistance. We selected seven phenolic compounds for further analysis, which varied considerably in content after inoculation with C. gloeosporioides. These seven compounds were salicin, arbutin, benzoic acid, salicylic acid, chlorogenic acid, ferulic acid, and naringenin, which helped poplar trees to limit the growth of C. gloeosporioides and differed in their antifungal effects, with phenolic acids having the strongest inhibitory effect. In addition, the optimal concentrations of different substances varied. We demonstrate that these phenolic compounds produced by poplar do play a certain role in the process of poplar resistance to anthracnose. These findings lay a foundation for future research into the antifungal mechanism of poplar trees and may be useful for enhancing the prevention and control of poplar anthracnose.


Assuntos
Colletotrichum , Populus , Antifúngicos/farmacologia , Arbutina/farmacologia , Ácido Clorogênico/farmacologia , Fenóis , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Ácido Salicílico/farmacologia
12.
Phytopathology ; 112(4): 888-897, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35311527

RESUMO

Pine wilt disease is a major forest disease worldwide, including in China, where it has severely damaged pine forest ecosystems, and the pathogen is pine wood nematode (Bursaphelenchus xylophilus). The thaumatin-like protein-1 gene (Bx-tlp-1) is a key gene associated with B. xylophilus pathogenicity, which is also responsive to α-pinene. In this study, an examination of Pinus massoniana seedlings infected by B. xylophilus revealed that monoterpene (sesquiterpene) levels peaked on days 15 and 27 (days 18 and 27). Meanwhile, P. massoniana Pm-tlp expression levels were high on days 3, 12, and 27, which were consistent with the expression of key enzymes genes in the terpene biosynthesis pathway. The functional similarity of B. xylophilus Bx-TLP-1 and P. massoniana Pm-TLP suggests Bx-TLP-1 and Pm-TLP may have similar roles in P. massoniana. There was also no secondary accumulation of terpenes in P. massoniana seedlings during B. xylophilus treated with dsRNA targeting Bx-tlp-1 (dsTLP1) infections, reflecting the decreased pathogenicity of B. xylophilus and the delayed disease progression in pine trees. And the results of micro-CT showed that the degree of cavitation for the trees inoculated with Bx-TLP-1 (0.3811 mm3) was greater than that for the trees inoculated with dsTLP1 PWNs (0.1204 mm3) on day 15 after inoculation. Results from this study indicated that B. xylophilus Bx-tlp-1 gene may induce the upregulated expression of related genes encoding enzymes in the terpene synthesis pathway of P. massoniana, resulting in the accumulation of terpenes, which also provided an insight to investigate the B. xylophilus pathogenicity in the future.


Assuntos
Pinus , Tylenchida , Animais , Ecossistema , Doenças das Plantas , RNA de Cadeia Dupla , Plântula/genética , Tylenchida/genética , Xylophilus
13.
Geriatr Nurs ; 45: 93-99, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35364480

RESUMO

This study aimed to elucidate the status of traditional Chinese medicine (TCM) healthcare services provided in nursing homes across China. We investigated 484 nursing homes using self-compiled questionnaires with a convenient sampling method. Chi-squared and Wilcoxon rank-sum tests were used for univariate analysis and binary logistic regression for multi-factor analysis. Of the 443 nursing homes finally included, 215 (48.5%) provided TCM healthcare services. Nursing home leaders majored in integrated TCM and Western medicine, leaders with a better understanding of TCM and government policies, nursing homes charging over 5,000 CNY/month, and those with ≥500 beds were more likely to provide improved TCM healthcare services. Massage, moxibustion, cupping or scraping, plaster therapy, decocting pieces, and acupuncture were the most prevalent and popular TCM services. Lack of professionals, financial investment, and policy support were the most common factors limiting the provision of TCM healthcare services in Chinese nursing homes.


Assuntos
Terapia por Acupuntura , Medicina Tradicional Chinesa , China , Atenção à Saúde , Humanos , Casas de Saúde
14.
Comput Inform Nurs ; 39(5): 265-272, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33950900

RESUMO

With the support of the Chinese government, nursing homes have increasingly adopted Internet and intelligent information technology to provide daily healthcare services to residents. However, no research has reported the status of intelligent healthcare in nursing homes. From September 2017 to May 2018, we conducted a survey of 197 nursing homes and collected information on their general characteristics, the intelligent healthcare services provided, the effectiveness of the application products used, and the attitudes of the staff and residents toward intelligent healthcare. Overall, 79.69% of the surveyed nursing homes have provided intelligent healthcare services, including medical care services (eg, chronic disease management and intelligent nursing) and daily life services (eg, fall monitoring and wireless positioning). Portable health monitoring devices and data management and service platforms are the most used healthcare products. The attitudes of staff probably affected the development of intelligent healthcare. Financial investment and the attitudes of staff and residents are factors that influence the effectiveness of the application of intelligent healthcare products in nursing homes. With the support of national policies, nursing homes have implemented primary intelligent healthcare. Stakeholders play pivotal roles in the provision of intelligent healthcare services.


Assuntos
Atenção à Saúde , Casas de Saúde , China , Atenção à Saúde/organização & administração , Atenção à Saúde/estatística & dados numéricos , Humanos , Casas de Saúde/estatística & dados numéricos , Inquéritos e Questionários
15.
Biol Reprod ; 103(1): 114-125, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32318688

RESUMO

Correct reprogramming of epigenetic marks in the donor nucleus is a prerequisite for successful cloning by somatic cell transfer (SCT). In several mammalian species, repressive histone (H) lysine (K) trimethylation (me3) marks, in particular H3K9me3, form a major barrier to somatic cell reprogramming into pluripotency and totipotency. We engineered bovine embryonic fibroblasts (BEFs) for the doxycycline-inducible expression of a biologically active, truncated form of murine Kdm4b, a demethylase that removes H3K9me3 and H3K36me3 marks. Upon inducing Kdm4b, H3K9me3 and H3K36me3 levels were reduced about 3-fold and 5-fold, respectively, compared with noninduced controls. Donor cell quiescence has been previously associated with reduced somatic trimethylation levels and increased cloning efficiency in cattle. Simultaneously inducing Kdm4b expression (via doxycycline) and quiescence (via serum starvation) further reduced global H3K9me3 and H3K36me3 levels by a total of 18-fold and 35-fold, respectively, compared with noninduced, nonstarved control fibroblasts. Following SCT, Kdm4b-BEFs reprogrammed significantly better into cloned blastocysts than noninduced donor cells. However, detrimethylated donors and sustained Kdm4b-induction during embryo culture did not increase the rates of postblastocyst development from implantation to survival into adulthood. In summary, overexpressing Kdm4b in donor cells only improved their reprogramming into early preimplantation stages, highlighting the need for alternative experimental approaches to reliably improve somatic cloning efficiency in cattle.


Assuntos
Blastocisto/fisiologia , Bovinos/embriologia , Reprogramação Celular/fisiologia , Clonagem de Organismos , Histonas/metabolismo , Técnicas de Transferência Nuclear , Animais , Reprogramação Celular/genética , Desmetilação , Desenvolvimento Embrionário/fisiologia , Epigênese Genética , Feminino , Expressão Gênica , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/fisiologia , Camundongos , Regulação para Cima
16.
Nanotechnology ; 31(11): 115502, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-31778981

RESUMO

Surface modification is a simple and effective means to promote the sensing performance of metal oxide semiconductor-based gas sensors. Marigold-shaped ZnO nanoflowers are fabricated via a simple precipitation reaction and subsequently catalytically modified with RuO2 on the surface through an ethylene glycol solvothermal treatment. The experimental results have proven that a very low content of Ru on the surface of ZnO exists in an oxidized state. However, the gas response of the sensor based on RuO2-modified ZnO is remarkably improved by 17 times to 100 ppm acetone with the decrease of optimal operating temperature from 219 °C-172 °C and reduction in recovery time from 79-52 s. The sensing enhancement mechanism of surface modification can be attributed to the formation of massive small heterostructure between p-type RuO2 ultrasmall nanoparticles and n-type ZnO as well as the catalytic effect of Ru4+ and a rougher surface.

17.
Sensors (Basel) ; 20(18)2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967306

RESUMO

Demands for the detection of harmful gas in daily life have arisen for a period and a gas nano-sensor acting as a kind of instrument that can directly detect gas has been of wide concern. The spinel-type nanomaterial is suitable for the research of gas sensors because of its unique structure. However, the existing instability, higher detection limit, and operating temperature of the spinel materials limit the extension of the spinel material sensor. This paper reviews the research progress of spinel materials in gas sensor technology in recent years and lists the common morphological structures and material sensitization methods in combination with previous works.

18.
Sensors (Basel) ; 20(12)2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545697

RESUMO

By controlling the hydrothermal time, porous In2O3 nanosheet-assembled micro-flowers were successfully synthesized by a one-step method. The crystal structure, microstructure, and internal structure of the prepared samples were represented by an x-ray structure diffractometry, scanning electron microscopy, and transmission electron microscopy, respectively. The characterization results showed that when the hydrothermal time was 8 h, the In2O3 nano materials presented a flower-like structure assembled by In2O3 porous nanosheets. After successfully preparing the In2O3 gas sensor, the gas sensing was fully studied. The results show that the In2O3 gas sensor had an excellent gas sensing response to ethanol, and the material prepared under 8 h hydrothermal conditions had the best gas sensing property. At the optimum working temperature of 270 °C, the highest response value could reach 66, with a response time of 12.4 s and recovery time of 10.4 s, respectively. In addition, the prepared In2O3 gas sensor had a wide detection range for ethanol concentration, and still had obvious response for 500 ppb ethanol. Furthermore, the gas sensing mechanism of In2O3 micro-flowers was also studied in detail.

19.
Int J Mol Sci ; 21(3)2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32024175

RESUMO

: Bursaphelenchus xylophilus is a nematode species that has damaged pine trees worldwide, but its pathogenesis has not been fully characterized. α-pinene helps protect host species during the early B. xylophilus infection and colonization stages. In this study, we identified potential molecular mimicry proteins based on a comparative transcriptomic analysis of B. xylophilus. The expression levels of three genes encoding secreted B. xylophilus proteins were influenced by α-pinene. We cloned one gene encoding a thaumatin-like protein, Bx-tlp-2 (accession number MK000287), and another gene encoding a cysteine proteinase inhibitor, Bx-cpi (accession number MK000288). Additionally, α-pinene appeared to induce Bx-tlp-1 expression, but had the opposite effect on Bx-cpi expression. An analysis of the expression of the potential molecular mimicry proteins in B. xylophilus infecting pine trees revealed that the α-pinene content was consistent with the expression levels of Bx-tlp-1 (Bx-cpi) and Pm-tlp (Pm-cpi) over time. Thus, these genes likely have important roles contributing to the infection of pine species by B. xylophilus. The results of this study may be relevant for future investigations of the functions of Bx-tlp-1, Bx-tlp-2 and Bx-cpi, which may provide a point to explore the relationship between B. xylophilus and host pines.


Assuntos
Monoterpenos Bicíclicos/farmacologia , Proteínas de Helminto/metabolismo , Interações Hospedeiro-Parasita/genética , Mimetismo Molecular , Pinus/parasitologia , Doenças das Plantas/parasitologia , Tylenchida/metabolismo , Animais , Proteínas de Helminto/genética , Filogenia , Transcriptoma , Tylenchida/efeitos dos fármacos , Tylenchida/genética
20.
Phytopathology ; 109(11): 1949-1956, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31573422

RESUMO

The pine wood nematode Bursaphelenchus xylophilus is a destructive species affecting pine trees worldwide; however, the underlying mechanism leading to pathogenesis remains unclear. In this study, a B. xylophilus gene encoding thaumatin-like protein-1 (Bx-tlp-1) was silenced by RNA interference to clarify the relationship between the Bx-tlp-1 gene and pathogenicity. The in vitro knockdown of Bx-tlp-1 with double-stranded RNA (dsRNA) decreased B. xylophilus reproduction and pathogenicity. Treatments with dsRNA targeting Bx-tlp-1 decreased expression by 90%, with the silencing effect maintained even in the F3 offspring. Pine trees inoculated with B. xylophilus treated with Bx-tlp-1 dsRNA decreased the symptom of wilting, and the disease severity index was 56.7 at 30 days after inoculation. Additionally, analyses of the cavitation of intact pine stem samples by X-ray microtomography revealed that the xylem cavitation area of pine trees inoculated with B. xylophilus treated with Bx-tlp-1 dsRNA was 0.46 mm2 at 30 days after inoculation. Results from this study indicated that the silencing of Bx-tlp-1 has effects on B. xylophilus fitness. The data presented here provide the foundation for future analyses of Bx-tlp-1 functions related to B. xylophilus pathogenicity.


Assuntos
Pinus , Tylenchida , Virulência , Animais , Técnicas de Silenciamento de Genes , Pinus/parasitologia , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , RNA de Cadeia Dupla , Tylenchida/genética , Tylenchida/patogenicidade , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA