Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Plant J ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975960

RESUMO

Drought is a detrimental environmental factor that restricts plant growth and threatens food security throughout the world. WRKY transcription factors play vital roles in abiotic stress response. However, the roles of IIe subgroup members from WRKY transcription factor family in soluble sugar mediated drought response are largely elusive. In this study, we identified a drought-responsive IIe subgroup WRKY transcription factor, PoWRKY69, from Paeonia ostii. PoWRKY69 functioned as a positive regulator in response to drought stress with nucleus expression and transcriptional activation activity. Silencing of PoWRKY69 increased plants sensitivity to drought stress, whereas conversely, overexpression of PoWRKY69 enhanced drought tolerance in plants. As revealed by yeast one-hybrid, electrophoretic mobility shift assay, and luciferase reporter assays, PoWRKY69 could directly bind to the W-box element of fructose-1,6-bisphosphate aldolase 5 (PoFBA5) promoter, contributing to a cascade regulatory network to activate PoFBA5 expression. Furthermore, virus-induced gene silencing and overexpression assays demonstrated that PoFBA5 functioned positively in response to drought stress by accumulating fructose to alleviate membrane lipid peroxidation and activate antioxidant defense system, these changes resulted in reactive oxygen species scavenging. According to yeast two-hybrid, bimolecular fluorescence complementation, and firefly luciferase complementation imaging assays, valine-glutamine 11 (PoVQ11) physically interacted with PoWRKY69 and led to an enhanced activation of PoWRKY69 on PoFBA5 promoter activity. This study broadens our understanding of WRKY69-VQ11 module regulated fructose accumulation in response to drought stress and provides feasible molecular measures to create novel drought-tolerant germplasm of P. ostii.

2.
BMC Genomics ; 25(1): 601, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877407

RESUMO

BACKGROUND: The herbaceous peony (Paeonia lactiflora Pall.) is extensively cultivated in China due to its root being used as a traditional Chinese medicine known as 'Radix Paeoniae Alba'. In recent years, it has been discovered that its seeds incorporate abundant unsaturated fatty acids, thereby presenting a potential new oilseed plant. Surprisingly, little is known about the full-length transcriptome sequencing of Paeonia lactiflora, limiting research into its gene function and molecular mechanisms. RESULTS: A total of 484,931 Reads of Inserts (ROI) sequences and 1,455,771 full-Length non-chimeric reads (FLNC) sequences were obtained for CDS prediction, TF analysis, SSR analysis and lncRNA identification. In addition, gene function annotation and gene structure analysis were performed. A total of 4905 transcripts were related to lipid metabolism biosynthesis pathway, belonging to 28 enzymes. We use these data to identify 10 oleosin (OLE) and 5 diacylglycerol acyltransferase (DGAT) gene members after de-redundancy. The analysis of physicochemical properties and secondary structure showed them similarity in gene family respectively. The phylogenetic analysis showed that the distribution of OLE and DGAT family members was roughly the same as that of Arabidopsis. Quantitative real-time polymerase chain reaction (qRT-PCR) analyses revealed expression changes in different seed development stages, and showed a trend of increasing and then decreasing. CONCLUSION: In summary, these results provide new insights into the molecular mechanism of triacylglycerol (TAG) biosynthesis and storage during the seedling stage in Paeonia lactiflora. It provides theoretical references for selecting and breeding oil varieties and understanding the functions of oil storage as well as lipid synthesis related genes in Paeonia lactiflora.


Assuntos
Paeonia , Sementes , Transcriptoma , Triglicerídeos , Paeonia/genética , Paeonia/metabolismo , Paeonia/crescimento & desenvolvimento , Sementes/genética , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Triglicerídeos/biossíntese , Filogenia , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Genes de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Metabolismo dos Lipídeos/genética
3.
Ann Bot ; 131(2): 323-334, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36534917

RESUMO

BACKGROUND AND AIMS: The tree peony (Paeonia suffruticosa Andr.) has been widely cultivated as a field plant, and petal blotch is one of its important traits, which not only promotes proliferation but also confers high ornamental value. However, the regulatory network controlling blotch formation remains elusive owing to the functional differences and limited conservation of transcriptional regulators in dicots. METHODS: We performed phylogenetic analysis to identify MYB44-like transcription factors in P. suffruticosa blotched cultivar 'High noon' petals. A candidate MYB44-like transcription factor, PsMYB44, was analysed via expression pattern analysis, subcellular localization, target gene identification, gene silencing in P. suffruticosa petals and heterologous overexpression in tobacco. KEY RESULTS: A blotch formation-related MYB44-like transcription factor, PsMYB44, was cloned. The C-terminal of the PsMYB44 amino acid sequence had a complete C2 motif that affects anthocyanin biosynthesis, and PsMYB44 was clustered in the MYB44-like transcriptional repressor branch. PsMYB44 was located in the nucleus, and its spatial and temporal expression patterns were negatively correlated with blotch formation. Furthermore, a yeast one-hybrid assay showed that PsMYB44 could target the promoter of the late anthocyanin biosynthesis-related dihydroflavonol-4-reductase (DFR) gene, and a dual-luciferase assay demonstrated that PsMYB44 could repress PsDFR promoter activity. On the one hand, overexpression of PsMYB44 significantly faded the red colour of tobacco flowers and decreased the anthocyanin content by 42.3 % by downregulating the expression level of the tobacco NtDFR gene. On the other hand, PsMYB44-silenced P. suffruticosa petals had a redder blotch colour, which was attributed to the fact that silencing PsMYB44 redirected metabolic flux to the anthocyanin biosynthesis branch, thereby promoting more anthocyanin accumulation in the petal base. CONCLUSION: These results demonstrated that PsMYB44 negatively regulated the biosynthesis of anthocyanin by directly binding to the PsDFR promoter and subsequently inhibiting blotch formation, which helped to elucidate the molecular regulatory network of anthocyanin-mediated blotch formation in plants.


Assuntos
Antocianinas , Paeonia , Antocianinas/análise , Antocianinas/metabolismo , Paeonia/genética , Paeonia/metabolismo , Filogenia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/metabolismo
4.
Int J Mol Sci ; 23(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36555332

RESUMO

The herbaceous peony (Paeonia lactiflora Pall.) is widely cultivated as an ornamental, medicinal and edible plant in China. Drought stress can seriously affect the growth of herbaceous peony and reduce its quality. In our previous research, a significantly differentially expressed gene, PM19L, was obtained in herbaceous peony under drought stress based on transcriptome analysis, but little is known about its function. In this study, the first PM19L that was isolated in herbaceous peony was comprised of 910 bp, and was designated as PlPM19L (OP480984). It had a complete open reading frame of 537 bp and encoded a 178-amino acid protein with a molecular weight of 18.95 kDa, which was located in the membrane. When PlPM19L was transferred into tobacco, the transgenic plants had enhanced tolerance to drought stress, potentially due to the increase in the abscisic acid (ABA) content and the reduction in the level of hydrogen peroxide (H2O2). In addition, the enhanced ability to scavenge H2O2 under drought stress led to improvements in the enzyme activity and the potential photosynthetic capacity. These results combined suggest that PlPM19L is a key factor to conferring drought stress tolerance in herbaceous peony and provide a scientific theoretical basis for the following improvement in the drought resistance of herbaceous peony and other plants through genetic engineering technology.


Assuntos
Paeonia , Paeonia/metabolismo , Secas , Peróxido de Hidrogênio/metabolismo , Perfilação da Expressão Gênica , Fotossíntese , Regulação da Expressão Gênica de Plantas
5.
BMC Genomics ; 22(1): 94, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33522906

RESUMO

BACKGROUND: Paeonia lactiflora 'Hangshao' is widely cultivated in China as a traditional Chinese medicine 'Radix Paeoniae Alba'. Due to the abundant unsaturated fatty acids in its seed, it can also be regarded as a new oilseed plant. However, the process of the biosynthesis of unsaturated fatty acids in it has remained unknown. Therefore, transcriptome analysis is helpful to better understand the underlying molecular mechanisms. RESULTS: Five main fatty acids were detected, including stearic acid, palmitic acid, oleic acid, linoleic acid and α-linolenic acid, and their absolute contents first increased and then decreased during seed development. A total of 150,156 unigenes were obtained by transcriptome sequencing. There were 15,005 unigenes annotated in the seven functional databases, including NR, NT, GO, KOG, KEGG, Swiss-Prot and InterPro. Based on the KEGG database, 1766 unigenes were annotated in the lipid metabolism. There were 4635, 12,304, and 18,291 DEGs in Group I (60 vs 30 DAF), Group II (90 vs 60 DAF) and Group III (90 vs 30 DAF), respectively. A total of 1480 DEGs were detected in the intersection of the three groups. In 14 KEGG pathways of lipid metabolism, 503 DEGs were found, belonging to 111 enzymes. We screened out 123 DEGs involved in fatty acid biosynthesis (39 DEGs), fatty acid elongation (33 DEGs), biosynthesis of unsaturated fatty acid (24 DEGs), TAG assembly (17 DEGs) and lipid storage (10 DEGs). Furthermore, qRT-PCR was used to analyze the expression patterns of 16 genes, including BBCP, BC, MCAT, KASIII, KASII, FATA, FATB, KCR, SAD, FAD2, FAD3, FAD7, GPAT, DGAT, OLE and CLO, most of which showed the highest expression at 45 DAF, except for DGAT, OLE and CLO, which showed the highest expression at 75 DAF. CONCLUSIONS: We predicted that MCAT, KASIII, FATA, SAD, FAD2, FAD3, DGAT and OLE were the key genes in the unsaturated fatty acid biosynthesis and oil accumulation in herbaceous peony seed. This study provides the first comprehensive genomic resources characterizing herbaceous peony seed gene expression at the transcriptional level. These data lay the foundation for elucidating the molecular mechanisms of fatty acid biosynthesis and oil accumulation for herbaceous peony.


Assuntos
Paeonia , China , Ácidos Graxos Insaturados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Paeonia/genética , Sementes/genética , Transcriptoma
6.
Molecules ; 23(4)2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29673187

RESUMO

The FAD8 gene catalyzes the conversion of diene fatty acids to triene fatty acids and is a key enzyme that determines the synthesis of alpha-linolenic acid. In this study, the full-length cDNAs of FAD8-1, FAD8-2, and FAD8-3 are cloned from Paeonia ostii T. Hong & J. X. Zhang and named as PoFAD8-1, PoFAD8-2, and PoFAD8-3. Their open reading frame is 1203 bp, 1152 bp, and 1353 bp which encoded 400, 371, and 450 amino acids. The molecular weights of the amino acids are 46 kDa, 43 kDa, and 51 kDa while the isoelectric points are 7.34, 8.74, and 9.23, respectively. Bioinformatics analysis shows that all three genes are hydrophobic-hydrophobic, PoFAD8-1 has three transmembrane domains, and PoFAD8-2 and PoFAD8-3 have two transmembrane domains. Multiple series alignment and phylogenetic analysis revealed that PoFAD8-1 and PoFAD8-2 are closely related while PoFAD8-3 is more closely related to Paeonia delavayi. Subcellular localization results showed that PoFAD8-1 was located on the ER membrane and PoFAD8-2 and PoFAD8-3 were located on the chloroplast membrane. The relative expression level of PoFAD8-1 in seeds is very high. PoFAD8-2 expressed more in the ovary than the other two genes. PoFAD8-3 was highly expressed in roots, stems, leaves, petals, and ovaries.


Assuntos
Ácidos Graxos Dessaturases/metabolismo , Paeonia/enzimologia , Paeonia/metabolismo , Proteínas de Plantas/metabolismo , Sementes/enzimologia , Sementes/metabolismo , Ácidos Graxos Dessaturases/genética , Regulação da Expressão Gênica de Plantas/genética , Paeonia/genética , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real , Sementes/genética
7.
Int J Mol Sci ; 16(10): 24332-52, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26473855

RESUMO

Herbaceous peony (Paeonia lactiflora Pall.) is an emerging high-grade cut flower worldwide, which is usually used in wedding bouquets and known as the "wedding flower". However, abundant lateral branches appear frequently in some excellent cultivars, and a lack of a method to remove Paeonia lactiflora lateral branches other than inefficient artificial methods is an obstacle for improving the quality of its cut flowers. In this study, paclobutrazol (PBZ) application was found to inhibit the growth of lateral branches in Paeonia lactiflora for the first time, including 96.82% decreased lateral bud number per branch, 77.79% and 42.31% decreased length and diameter of lateral branches, respectively, declined cell wall materials and changed microstructures. Subsequently, isobaric tag for relative and absolute quantitation (iTRAQ) technology was used for quantitative proteomics analysis of lateral branches under PBZ application and control. The results indicated that 178 differentially expressed proteins (DEPs) successfully obtained, 98 DEPs were up-regulated and 80 DEPs were down-regulated. Thereafter, 34 candidate DEPs associated with the inhibited growth of lateral branches were screened according to their function and classification. These PBZ-stress responsive candidate DEPs were involved in eight biological processes, which played a very important role in the growth and development of lateral branches together with the response to PBZ stress. These results provide a better understanding of the molecular theoretical basis for removing Paeonia lactiflora lateral branches using PBZ application.


Assuntos
Flores/crescimento & desenvolvimento , Paeonia/crescimento & desenvolvimento , Triazóis/farmacologia , Transporte Biológico/fisiologia , Parede Celular/metabolismo , Metabolismo Energético/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Proteômica
8.
BMC Genomics ; 15: 689, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25134523

RESUMO

BACKGROUND: Herbaceous peony (Paeonia lactiflora Pall.) is a traditional flower in China and a wedding attractive flower in worldwide. In its flower colour, yellow is the rarest which is ten times the price of the other colours. However, the breeding of new yellow P. lactiflora varieties using genetic engineering is severely limited due to the little-known biochemical and molecular mechanisms underlying its characteristic formation. RESULTS: In this study, two cDNA libraries generated from P. lactiflora chimaera with red outer-petal and yellow inner-petal were sequenced using an Illumina HiSeq™ 2000 platform. 66,179,398 and 65,481,444 total raw reads from red outer-petal and yellow inner-petal cDNA libraries were generated, which were assembled into 61,431 and 70,359 Unigenes with an average length of 628 and 617 nt, respectively. Moreover, 61,408 non-redundant All-unigenes were obtained, with 37,511 All-unigenes (61.08%) annotated in public databases. In addition, 6,345 All-unigenes were differentially expressed between the red outer-petal and yellow inner-petal, with 3,899 up-regulated and 2,446 down-regulated All-unigenes, and the flavonoid metabolic pathway related to colour development was identified using the Kyoto encyclopedia of genes and genomes database (KEGG). Subsequently, the expression patterns of 10 candidate differentially expressed genes (DEGs) involved in the flavonoid metabolic pathway were examined, and flavonoids were qualitatively and quantitatively analysed. Numerous anthoxanthins (flavone and flavonol) and a few anthocyanins were detected in the yellow inner-petal, which were all lower than those in the red outer-petal due to the low expression levels of the phenylalanine ammonialyase gene (PlPAL), flavonol synthase gene (PlFLS), dihydroflavonol 4-reductase gene (PlDFR), anthocyanidin synthase gene (PlANS), anthocyanidin 3-O-glucosyltransferase gene (Pl3GT) and anthocyanidin 5-O-glucosyltransferase gene (Pl5GT). CONCLUSION: Transcriptome sequencing (RNA-Seq) analysis based on the high throughput sequencing technology was an efficient approach to identify critical genes in P. lactiflora and other non-model plants. The flavonoid metabolic pathway and glucide metabolic pathway were identified as relatived yellow formation in P. lactiflora, PlPAL, PlFLS, PlDFR, PlANS, Pl3GT and Pl5GT were selected as potential candidates involved in flavonoid metabolic pathway, which inducing inhibition of anthocyanin biosynthesis mediated yellow formation in P. lactiflora. This study could lay a theoretical foundation for breeding new yellow P. lactiflora varieties.


Assuntos
Antocianinas/biossíntese , Quimera , Perfilação da Expressão Gênica , Paeonia/genética , Paeonia/metabolismo , Pigmentação/genética , Análise de Sequência de RNA , Cruzamento , Flores/anatomia & histologia , Ontologia Genética , Anotação de Sequência Molecular , Paeonia/anatomia & histologia
10.
Plant Physiol Biochem ; 158: 475-485, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33250322

RESUMO

Seed viability is an important trait in agriculture which directly influences seedling emergence and crop yield. However, even when stored under optimal conditions, all seeds will eventually lose their viability. Our primary aims were to describe factors influencing seed deterioration, determine the morphological, physiological, and biochemical changes that occur during the process of seed ageing, and explore the mechanisms involved in seed deterioration. High relative humidity and high temperature are two factors that accelerate seed deterioration. As seeds age, frequently observed changes include membrane damage and the destruction of organelle structure, an increase in the loss of seed leachate, decreases of respiratory rates and ATP production, and a loss of enzymatic activity. These phenomena could be inter-related and reflect the general breakdown in cellular organization. Many processes can result in seed ageing; it is likely that oxidative damage caused by free radicals and reactive oxygen species (ROS) is primarily responsible. ROS can have vital interactions with any macromolecule of biological interest that result in damage to various cellular components caused by protein damage, lipid peroxidation, chromosomal abnormalities, and DNA lesions. Further, ROS may also cause programmed cell death by inducing the opening of mitochondrial permeability transition pores and the release of cytochrome C. Some repairs can occur in the early stages of imbibition, but repair processes fail if sufficient damage has been caused to critical functional components. As a result, a given seed will lose its viability and eventually fail to germinate in a relatively short time period.


Assuntos
Germinação , Peroxidação de Lipídeos , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Sementes/fisiologia , Dano ao DNA , Temperatura Alta , Umidade
11.
Plants (Basel) ; 10(10)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34686020

RESUMO

Plant growth and development are closely related to the environment, and high-temperature stress is an important environmental factor that affects these processes. WRKY transcription factors (TFs) play important roles in plant responses to high-temperature stress. WRKY TFs can bind to the W-box cis-acting elements of target gene promoters, thereby regulating the expression of multiple types of target genes and participating in multiple signaling pathways in plants. A number of studies have shown the important biological functions and working mechanisms of WRKY TFs in plant responses to high temperature. However, there are few reviews that summarize the research progress on this topic. To fully understand the role of WRKY TFs in the response to high temperature, this paper reviews the structure and regulatory mechanism of WRKY TFs, as well as the related signaling pathways that regulate plant growth under high-temperature stress, which have been described in recent years, and this paper provides references for the further exploration of the molecular mechanisms underlying plant tolerance to high temperature.

12.
Plant Sci ; 303: 110765, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33487350

RESUMO

Paeonia ostii is an emerging woody oil crop, but drought severely inhibits its growth and promotion in arid or semiarid areas, and little is known about the mechanism governing this inhibition. In this study, the full-length cDNA of a caffeoyl-CoA O-methyltransferase gene (CCoAOMT) from P. ostii was isolated, and determined to be comprised of 987 bp. PoCCoAOMT encoded a 247-amino acid protein, which was located in the nucleus and cytosol. Significantly higher PoCCoAOMT transcription was detected in P. ostii treated with drought stress. Subsequently, the constitutive overexpression of PoCCoAOMT in tobacco significantly conferred drought stress tolerance. Under drought stress, transgenic lines exhibited lower reactive oxygen species (ROS) accumulation, and higher antioxidant enzyme activities and photosynthesis. Moreover, the expression levels of senescence-associated genes were significantly downregulated, whereas the expression levels of lignin biosynthetic genes and PoCCoAOMT were significantly upregulated in transgenic lines. Similarly, transgenic lines produced significantly higher lignin, especially guaiacyl-lignin. These results suggest that PoCCoAOMT is a vital gene in promoting lignin synthesis and ROS scavenging to confer drought stress tolerance in P. ostii.


Assuntos
Lignina/biossíntese , Metiltransferases/metabolismo , Paeonia/enzimologia , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Desidratação , Regulação da Expressão Gênica de Plantas , Metiltransferases/fisiologia , Paeonia/metabolismo , Paeonia/fisiologia , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Nicotiana
13.
Hortic Res ; 6: 36, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30854212

RESUMO

The mechanical strength of inflorescence stems is an important trait in cut flowers. Calcium ions (Ca2+) play a pivotal role in maintaining stem strength, but little is known about the underlying molecular mechanisms. In this study, we treated herbaceous peony (Paeonia lactiflora Pall.) with ethyl glycol tetraacetic acid (EGTA), an effective Ca2+ chelator, and used morphology indicators, spectroscopic analysis, histochemical staining, electron microscopy, and proteomic techniques to investigate the role of Ca2+ in inflorescence stem mechanical strength. The EGTA treatment reduced the mechanical strength of inflorescence stems, triggered the loss of Ca2+ from cell walls, and reduced lignin in thickened secondary walls in xylem cells as determined by spectroscopic analysis and histochemical staining. Electron microscopy showed that the EGTA treatment also resulted in significantly fewer xylem cell layers with thickened secondary walls as well as in reducing the thickness of these secondary walls. The proteomic analysis showed 1065 differentially expressed proteins (DEPs) at the full-flowering stage (S4). By overlapping the Kyoto encyclopedia of genes and genomes (KEGG) and gene ontology (GO) analysis results, we identified 43 DEPs involved in signal transduction, transport, energy metabolism, carbohydrate metabolism, and secondary metabolite biosynthesis. Using quantitative real-time polymerase chain reaction (qRT-PCR) analysis, we showed that EGTA treatment inhibited Ca2+ sensors and secondary wall biosynthesis-related genes. Our findings revealed that EGTA treatment reduced the inflorescence stem mechanical strength by reducing lignin deposition in xylem cells through altering the expression of genes involved in Ca2+ binding and secondary wall biosynthesis.

14.
Cells ; 8(2)2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30704139

RESUMO

Weak stem mechanical strength severely restrains cut flowers quality and stem weakness can be alleviated by calcium (Ca) treatment, but the mechanisms underlying Ca-mediated enhancement of stem mechanical strength remain largely unknown. In this study, we performed a comparative transcriptomic, proteomic, and metabolomic analysis of herbaceous peony (Paeonia lactiflora Pall.) inflorescence stems treated with nanometer Ca carbonate (Nano-CaCO3). In total, 2643 differentially expressed genes (DEGs) and 892 differentially expressed proteins (DEPs) were detected between the Control and nano-CaCO3 treatment. Among the 892 DEPs, 152 were coregulated at both the proteomic and transcriptomic levels, and 24 DEPs related to the secondary cell wall were involved in signal transduction, energy metabolism, carbohydrate metabolism and lignin biosynthesis, most of which were upregulated after nano-CaCO3 treatment during the development of inflorescence stems. Among these four pathways, numerous differentially expressed metabolites (DEMs) related to lignin biosynthesis were identified. Furthermore, structural observations revealed the thickening of the sclerenchyma cell walls, and the main wall constitutive component lignin accumulated significantly in response to nano-CaCO3 treatment, thereby indicating that Ca can enhance the mechanical strength of the inflorescence stems by increasing the lignin accumulation. These results provided insights into how Ca treatment enhances the mechanical strength of inflorescence stems in P. lactiflora.


Assuntos
Cálcio/farmacologia , Inflorescência/fisiologia , Metaboloma , Paeonia/genética , Paeonia/fisiologia , Caules de Planta/fisiologia , Proteoma/metabolismo , Transcriptoma/genética , Fenômenos Biomecânicos , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Inflorescência/efeitos dos fármacos , Inflorescência/ultraestrutura , Nanopartículas/química , Paeonia/efeitos dos fármacos , Paeonia/metabolismo , Fotossíntese/efeitos dos fármacos , Caules de Planta/efeitos dos fármacos , Caules de Planta/ultraestrutura
15.
Sci Total Environ ; 634: 1326-1334, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29710632

RESUMO

Paeonia (Paeoniaceae), an economically important plant genus, includes many popular ornamentals and medicinal plant species used in traditional Chinese medicine. Little is known about the properties of the habitat distribution and the important eco-environmental factors shaping the suitability. Based on high-resolution environmental data for current and future climate scenarios, we modeled the present and future suitable habitat for P. delavayi and P. rockii by Maxent, evaluated the importance of environmental factors in shaping their distribution, and identified distribution shifts under climate change scenarios. The results showed that the moderate and high suitable areas for P. delavayi and P. rockii encompassed ca. 4.46×105km2 and 1.89×105km2, respectively. Temperature seasonality and isothermality were identified as the most critical factors shaping P. delavayi distribution, and UVB-4 and annual precipitation were identified as the most critical for shaping P. rockii distribution. Under the scenario with a low concentration of greenhouse gas emissions (RCP2.6), the range of both species increased as global warming intensified; however, under the scenario with higher concentrations of emissions (RCP8.5), the suitable habitat range of P. delavayi decreased while P. rockii increased. Overall, our prediction showed that a shift in distribution of suitable habitat to higher elevations would gradually become more significant. The information gained from this study should provide a useful reference for implementing long-term conservation and management strategies for these species.


Assuntos
Mudança Climática , Modelos Biológicos , Paeonia/fisiologia , Ecossistema , Aquecimento Global , Dispersão Vegetal , Temperatura
16.
Protoplasma ; 255(4): 1001-1013, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29359232

RESUMO

Herbaceous peony (Paeonia lactiflora Pall.) is a popular high-grade cut flower because of higher ornamental value. However, its short flowering time severely restricts the production and application of cut P. lactiflora flowers. In this study, nano-silver (NS) was applied to prolong the vase life of cut P. lactiflora flowers. Under the NS treatment, related physiological indices including relative electrical conductivity (REC), malondialdehyde (MDA), superoxide anion free radical (O2·-), hydrogen peroxide (H2O2) and free proline contents, and protective enzyme activities including superoxide dismutase (SOD), peroxidase (POD) and ascorbic acid peroxidase (APX) all increased in cut P. lactiflora flowers except soluble protein. Meanwhile, NS treatment increased relative water uptake (RWU) and Ag+ distribution. Moreover, the observation of microstructures indicated that the stem-ends without NS treatment were blocked by microbes which were identified as Alternaria sp. and Phoma sp., and NS effectively inhibited their growth by antibacterial efficacy observation. Additionally, three aquaporin genes (AQPs) including two plasma membrane intrinsic protein genes (PlPIP1;2, PlPIP2;1) and one NOD26-like intrinsic protein gene (PlNIP) were isolated, PlPIP1;2, and PlPIP2;1 that were induced by NS treatment took common effects on maintaining the water balance of cut P. lactiflora flowers. Consequently, the vase life of cut P. lactiflora flowers was prolonged and flower fresh weight together with flower diameter was well kept because of these above factors. These results would provide a theoretical basis for prolonging the vase life and improving the ornamental quality of cut P. lactiflora flowers with NS application.


Assuntos
Flores/química , Paeonia/química , Caules de Planta/química , Prata/química
17.
Sci Rep ; 7(1): 10423, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28874722

RESUMO

Cut gardenia (Gardenia jasminoides Ellis) foliage is widely used as a vase material or flower bouquet indoors; however, insufficient indoor light accelerates its senescence, which shortens its viewing time. In this study, applying melatonin to delay gardenia leaf senescence when exposed to extremely low light condition (darkness), and the results showed that 1.0 mM was the effective concentration. At this concentration, chlorophyll contents and chlorophyll fluorescence parameters (Fv/Fm, Fv/F0 and Y(II)) increased, while the carotenoid and flavonoid contents decreased. Meanwhile, stress physiological indices decreased in response to exogenous melatonin application, whereas an increase in glutamine synthetase activity, water and soluble protein contents was observed. Moreover, exogenous melatonin application also reduced leaf programmed cell death under darkness, increased the endogenous melatonin level, expression levels of tryptophan decarboxylase gene, superoxide dismutase and catalase activities and the ascorbate-glutathione cycle, and maintained more intact anatomical structures. Furthermore, transcriptome sequencing revealed that various biological processes responded to exogenous melatonin application, including carbohydrate metabolism, amino acid metabolism, lipid metabolism, plant hormone signal transduction and pigment biosynthesis. Consequently, dark-induced leaf senescence in gardenia was significantly delayed. These results provided a better understanding for improving the ornamental value of cut gardenia foliage using melatonin.


Assuntos
Envelhecimento , Escuridão , Gardenia/anatomia & histologia , Gardenia/fisiologia , Melatonina/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Envelhecimento/genética , Envelhecimento/efeitos da radiação , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Biológicos , Oxirredução , Fenótipo , Pigmentos Biológicos/metabolismo , Folhas de Planta/ultraestrutura , Estresse Fisiológico , Transcriptoma
18.
3 Biotech ; 7(6): 379, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29071176

RESUMO

microRNAs (miRNAs) play critical regulatory roles in plant growth and development. In the present study, the function of herbaceous peony (Paeonia lactiflora Pall.) miR156e-3p in the regulation of color formation has been investigated. Firstly, P. lactiflora miR156e-3p precursor sequence (pre-miR156e-3p) was isolated. Subsequently, the overexpression vector of pre-miR156e-3p was constructed and transformed into Arabidopsis thaliana. Moreover, the medium screening, GUS staining, polymerase chain reaction (PCR) of the GUS region and real-time quantitative PCR (qRT-PCR) of miR156e-3p all confirmed that the purpose gene had been successfully transferred into Arabidopsis plants and expressed, which resulted in apparent purple lateral branches. And this change in color was caused by the improved anthocyanin accumulation. In addition, expression analysis had shown that the level of miR156e-3p transcript was increased, while transcription level of target gene squamosa promoter binding protein-like gene (SPL1), encoding SPL transcription factor that negatively regulated anthocyanin accumulation, was repressed in miR156e-3p-overexpressing transgenic plants, and its downstream gene dihydroflavonol 4-reductase gene (DFR) that was directly involved in anthocyanin biosynthesis was strongly expressed, which resulted in anthocyanin accumulation of Arabidopsis lateral branches. These findings would improve the understanding of miRNAs regulation of color formation in P. lactiflora.

19.
PLoS One ; 10(7): e0133305, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26208357

RESUMO

Herbaceous peony (Paeonia lactiflora Pall.) is a well-known traditional flower in China and is widely used for landscaping and garden greening due to its high ornamental value. However, disease spots usually appear after the flowering of the plant and may result in the withering of the plant in severe cases. This study examined the disease incidence in an herbaceous peony field in the Yangzhou region, Jiangsu Province. Based on morphological characteristics and molecular data, the disease in this area was identified as a gray mold caused by Botrytis cinerea. Based on previously obtained transcriptome data, eight libraries generated from two herbaceous peony cultivars 'Zifengyu' and 'Dafugui' with different susceptibilities to the disease were then analyzed using digital gene expression profiling (DGE). Thousands of differentially expressed genes (DEGs) were screened by comparing the eight samples, and these genes were annotated using the Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) database. The pathways related to plant-pathogen interaction, secondary metabolism synthesis and antioxidant system were concentrated, and 51, 76, and 13 disease resistance-relevant candidate genes were identified, respectively. The expression patterns of these candidate genes differed between the two cultivars: their expression of the disease-resistant cultivar 'Zifengyu' sharply increased during the early stages of infection, while it was relatively subdued in the disease-sensitive cultivar 'Dafugui'. A selection of ten candidate genes was evaluated by quantitative real-time PCR (qRT-PCR) to validate the DGE data. These results revealed the transcriptional changes that took place during the interaction of herbaceous peony with B. cinerea, providing insight into the molecular mechanisms of host resistance to gray mold.


Assuntos
Botrytis , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Paeonia/genética , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Expressão Gênica , Perfilação da Expressão Gênica , Paeonia/microbiologia , Folhas de Planta/microbiologia , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA