RESUMO
BACKGROUND: Compost-bedded pack barns (CBP) are getting huge attention as an alternative housing system for dairy cows due to their beneficial impact on animal welfare. Effective microorganisms (EM) inoculums are believed to enhance compost quality, improve soil structure and benefit the environment. However, little information is available on the impact of incubation with external EM combinations on the barn environment, compost quality and microbial diversity in CBP. This experiment was carried out to investigate the effect of inoculating different combinations of EM [Lactobacillus plantarum (L), Compound Bacillus (B) and Saccharomyces cerevisiae (S)] on compost quality and microbial communities of CBP products, as well as the relationship with the heifers' barn environment. CBP barns were subjected to the following four treatments: CON with no EM inoculum, LB/LS/LBS were Incubated with weight ratios of 1:2 (L: B), 1:2 (L: S), 1:1:1 (L: B: S), respectively. RESULTS: The EM inoculation (LB, LS, LBS) reduced the concentration of respirable particulate matter (PM10 and PM2.5) in the CBP, and decreased the serum total protein and total cholesterol levels in heifers. Notably, LBS achieved the highest content of high-density lipoprotein compared to other treatments. Microbiome results revealed that EM inoculation reduced the bacterial abundance (Chao1 index) and fungal diversity (Shannon & Simpson indexes), while increasing the relative abundance of various bacterial genera (Pseudomonas, Paracoccus, Aequorivita) and fungi (Pestalotiopsis), which are associated with cellulose decomposition that ultimately resulted in accelerating organic matter degradation and humification. Furthermore, high nutrient elements (TK&TP) and low mycotoxin content were obtained with EM inoculation, with LBS showing a particularly pronounced effect. Meanwhile, LBS contributed to a decline in the proportion of fungal pathogen categories but also led to an increase in fungal saprotroph categories. CONCLUSION: Generally, EM inoculation positively impacted compost product quality as organic fertilizer and barn environment by modifying the abundance of cellulolytic bacteria and fungi, while inhibiting the reproduction of pathogenic microbes, especially co-supplementing with L, B and S achieved an amplifying effect.
Assuntos
Bactérias , Compostagem , Fungos , Animais , Bovinos , Compostagem/métodos , Fungos/classificação , Bactérias/classificação , Bactérias/isolamento & purificação , Abrigo para Animais , Interações Microbianas , Feminino , Microbiologia do Solo , MicrobiotaRESUMO
Immunocastration via vaccination against gonadotropin-releasing hormone (GnRH) is an effective alternative to surgical castration in livestock. In this study, male mice were immunized with eight GnRH peptide derivatives. Two, which exhibited highly significant effects in mice, and one which exhibited the least significant effects were selected for active immunization of 13-month-old bulls. The effects of these GnRH vaccines on sexual development and meat quality in bulls were evaluated by examining testis length, serum hormone and GnRH antibody concentrations, observation of sexual behavior and testicular tissue sections, and evaluation of meat quality indexes. The results indicated that anti-GnRH titers increased rapidly (P < 0.05) and serum follicle stimulating hormone, luteinizing hormone, and testosterone concentrations decreased sharply after booster immunization (P < 0.05), while testis volumes were lower (P < 0.01), testicular growth was arrested and spermatogenesis inhibited in group C GnRH-treated versus control bull groups. Meat quality was not significantly different in immunocastrates relative to bulls in the control group. Our collective results provide a scientific basis to further clarify the mechanisms underlying GnRH-mediated regulation of livestock reproduction, and contribute to the development of an efficient, safe, and reversible immune castration vaccine.
Assuntos
Hormônio Liberador de Gonadotropina/administração & dosagem , Hormônio Liberador de Gonadotropina/imunologia , Espermatogênese/efeitos dos fármacos , Testículo/efeitos dos fármacos , Animais , Anticorpos , Bovinos , Hormônio Foliculoestimulante/sangue , Hormônio Luteinizante/sangue , Masculino , Carne , Camundongos , Testosterona/sangue , VacinaçãoRESUMO
IMPORTANCE: In in vitro studies, it has been found that the effects of MLT on rumen microorganisms and metabolites can change the rumen flora structure, significantly inhibit the relative abundance of harmful Acinetobacter, and improve the relative abundance of beneficial bacteria. MLT may regulate the "arginine-glutathione" pathway, "phenylalanine, tyrosine and tryptophan biosynthesis-tryptophan generation" branch, "tryptophan-kynurenine" metabolism, and "tryptophan-tryptamine-serotonin" pathway through microorganisms.
Assuntos
Microbioma Gastrointestinal , Melatonina , Animais , Triptofano/metabolismo , Melatonina/metabolismo , Rúmen , Redes e Vias MetabólicasRESUMO
BACKGROUND: Cystic echinococcosis (CE) is a serious parasitic zoonosis caused by the larvae of the tapeworm Echinococcus granulosus. The development of an effective vaccine is one of the most promising strategies for controlling CE. METHODS: The E. granulosus 3-hydroxyacyl-CoA dehydrogenase (EgHCDH) gene was cloned and expressed in Escherichia coli. The distribution of EgHCDH in protoscoleces (PSCs) and adult worms was analyzed using immunofluorescence. The transcript levels of EgHCDH in PSCs and adult worms were analyzed using quantitative real-time reverse transcription PCR (RT-qPCR). The immune protective effects of the rEgHCDH were evaluated. RESULTS: The 924-bp open reading frame sequence of EgHCDH, which encodes a protein of approximately 34 kDa, was obtained. RT-qPCR analysis revealed that EgHCDH was expressed in both the PSCs and adult worms of E. granulosus. Immunofluorescence analysis showed that EgHCDH was mainly localized in the tegument of PSCs and adult worms. Western blot analysis showed that the recombinant protein was recognized by E. granulosus-infected dog sera. Animal challenge experiments demonstrated that dogs immunized with recombinant (r)EgHCDH had significantly higher serum IgG, interferon gamma and interleukin-4 concentrations than the phosphate-buffered saline (PBS) control group. The rEgHCDH vaccine was able to significantly reduce the number of E. granulosus and inhibit the segmental development of E. granulosus compared to the PBS control group. CONCLUSIONS: The results suggest that rEgHCDH can induce partial immune protection against infection with E. granulosus and could be an effective candidate for the development of new vaccines.
Assuntos
3-Hidroxiacil-CoA Desidrogenase/imunologia , Doenças do Cão/parasitologia , Equinococose/veterinária , Echinococcus granulosus/enzimologia , Proteínas de Helminto/imunologia , 3-Hidroxiacil-CoA Desidrogenase/genética , Animais , Anticorpos Anti-Helmínticos/sangue , Anticorpos Anti-Helmínticos/imunologia , Doenças do Cão/sangue , Doenças do Cão/imunologia , Cães , Equinococose/sangue , Equinococose/imunologia , Equinococose/parasitologia , Echinococcus granulosus/genética , Echinococcus granulosus/imunologia , Feminino , Imunofluorescência , Proteínas de Helminto/genética , Humanos , Imunização , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Camundongos Endogâmicos BALB CRESUMO
Cystic echinococcosis (CE) is a cosmopolitan zoonosis caused by the larval stage of Echinococcus granulosus, which affects humans and a wide range of mammalian intermediate hosts. Parasite tetraspanin proteins are crucial for host-parasite interactions, and therefore they may be useful for vaccine development or disease diagnosis. In the present study, the major antigen coding sequence of tetraspanin 11 (Eg-TSP11) from E. granulosus was determined. The results of immunolocalization showed that Eg-TSP11 was mainly located in the tegument of adult worms and protoscoleces. Western blotting analysis showed that the serum from dogs injected with recombinant Eg-TSP11 (rEg-TSP11) could recognize Eg-TSP11 among natural protoscolex proteins. Moreover, the serum from dogs with E. granulosus infection also recognized rEg-TSP11. Serum indirect enzyme-linked immunosorbent assays demonstrated that IgG levels gradually increased after the first immunization with rEg-TSP11 compared with those in the control group. Furthermore, the serum levels of interleukin 4, interleukin 5, and interferon gamma were significantly altered in the rEg-TSP11 group. Importantly, we found that vaccination with rEg-TSP11 significantly decreased worm burden and inhibited segment development in a dog model of E. granulosus infection. Based on these findings, we speculated that rEg-TSP11 might be a potential candidate vaccine antigen against E. granulosus infection in dogs.
RESUMO
Moniezia expansa (M. expansa) parasitizes the small intestine of sheep and causes inhibited growth and development or even death. Being globally distributed, it causes considerable economic losses to the animal husbandry industry. Here, using Illumina, PacBio and BioNano techniques, we obtain a high-quality genome assembly of M. expansa, which has a total length of 142 Mb, a scaffold N50 length of 7.27 Mb and 8,104 coding genes. M. expansa has a very high body fat content and a specific type of fatty acid metabolism. It cannot synthesize any lipids due to the loss of some key genes involved in fatty acid synthesis, and it may can metabolize most lipids via the relatively complete fatty acid ß-oxidation pathway. The M. expansa genome encodes multiple lipid transporters and lipid binding proteins that enable the utilization of lipids in the host intestinal fluid. Although many of its systems are degraded (with the loss of homeobox genes), its reproductive system is well developed. PL10, AGO, Nanos and Pumilio compose a reproductive stem cell regulatory network. The results suggest that the high body lipid content of M. expansa provides an energy source supporting the high fecundity of this parasite. Our study provides insight into host interaction, adaptation, nutrient acquisition, strobilization, and reproduction in this parasite and this is also the first genome published in Anoplocephalidae.
Assuntos
Cestoides , Tecido Adiposo , Animais , Ácidos Graxos , Reprodução , Ovinos , Células-TroncoRESUMO
In this study, the complete mitochondrial genome of Marco Polo wild sheep was sequenced for the first time. It is 16 613 bp in length and possesses 22 tRNA genes, 13 typical mammalian protein-coding genes, two rRNA genes and one D-loop region. The whole genome's base composition is 33.7% A, 25.8% C, 13.1% G and 27.4% T, and the percentage of AT-rich regions is 61.1%.