Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Environ Manage ; 216: 62-69, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28958462

RESUMO

A composted material derived from biogas production residues, spent mushroom substrate (SMS) and pig manure was evaluated as a partial or total replacement for peat in growth medium for tomato and pepper seedlings. Five different substrates were tested: T1, compost + perlite (5:1, v:v); T2, compost + peat + perlite (4:1:1, v:v:v); T3, compost + peat + perlite (2.5:2.5:1, v:v:v); T4, compost + peat + perlite (1:4:1, v:v:v); and CK, a commercial peat + perlite (5:1, v:v). The physical-chemical characteristics of the various media were analyzed, and the germination rate and morphological growth were also measured. Real-time Quantitative PCR (qPCR) was used to quantify Fusarium concentrations. The addition of compost to peat-based growth medium increased the pH, electrical conductivity, air porosity, bulk density, and nutrition (NPK), and decreased the water holding capacity and total porosity. The use of compost did not affect the percent germination at day 15 of the tomato and pepper seedlings. The addition of compost resulted in better or comparable seedling quality compared with CK and fertilized CK. The best growth parameters were seen in tomato and pepper seedlings grown in T1 and T2, with higher morphological growth in comparison with CK and fertilized CK. However, T2 showed the highest Fusarium concentration compared to compost and all growth media. Fusarium concentrations in T1, T3, and T4 did not differ significantly from those in CK for tomato seedlings, and those in T1 and T4 were also similar to those in CK for pepper seedlings. The results suggest that biogas residues and SMS compost is a good alternative to peat, allowing 100% replacement, and that 20-50% replacement produces tomato and pepper seedlings with higher morphological growth and lower Fusarium concentrations.


Assuntos
Agaricales , Biocombustíveis , Solanum lycopersicum , Animais , Plântula , Solo , Suínos
2.
Bioresour Technol ; 399: 130576, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479625

RESUMO

In this study, a pilot-scale anaerobic membrane bioreactor (AnMBR) was developed to continuously produce volatile fatty acids (VFAs) from kitchen waste slurry under an alkaline condition. The alkaline fermentation effectively suppressed methanogenesis, thus achieving high VFAs production of 60.3 g/L. Acetic acid, propionic acid, and butyric acid accounted for over 95.0 % of the total VFAs. The VFAs yield, productivity, and chemical oxygen demand (COD) recovery efficiency reached 0.5 g/g-CODinfluent, 6.0 kg/m3/d, and 62.8 %, respectively. Moreover, the CODVFAs/CODeffluent ratio exceeded 96.0 %, and the CODVFAs/NH3-N ratio through ammonia distillation reached up to 192.5. The microbial community was reshaped during the alkaline fermentation with increasing salinity. The membrane fouling of the AnMBR was alleviated by chemical cleaning and sludge discharge, and membrane modules displayed a sustained filtration performance. In conclusion, this study demonstrated that high-quality VFAs could be efficiently produced from kitchen waste slurry using an AnMBR process via alkaline fermentation.


Assuntos
Reatores Biológicos , Salinidade , Fermentação , Anaerobiose , Ácidos Graxos Voláteis , Esgotos , Concentração de Íons de Hidrogênio
3.
Environ Sci Pollut Res Int ; 30(16): 46257-46269, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36717416

RESUMO

With the booming development of biogas industry to treat organic waste in China, the by-product of biogas slurry was accompanied with a huge amount. Static storage process of biogas slurry was normally operated under different seasons before application to land which would cause nutrition decomposition and greenhouse gas emission. Thus, the aim of this study was to investigate the nutrition decomposition, greenhouse gas emission (CH4 and N2O), and phytotoxicity of biogas slurry under different static temperatures, furthermore to illuminate the network among them and functional microorganism. According to the results, higher temperature at 30 °C contributed to fast and complete degradation of COD. In addition, more quantity of NH4+ conversion and NO3- formation appeared at 30 °C. These factors resulted in relatively less crop toxicity together. CH4 was the dominant greenhouse gas emission than N2O and was highest in 30 °C treatment with total emission of 273.7 L/(m3·d) and greenhouse gas emission of 20.01 kg CO2e (carbon dioxide equivalent). Lower temperature was conductive to N reservation and reduction of greenhouse gas emission, but making against with stabilization of organic matter and crop safety. At the same dilution times (≤3) of biogas slurry with deionized water, higher temperature at 30 °C could reduce 30 days of storage time, but 10 °C was still unsafe for crop. Structural equation model was further illustrated the positive effect of temperature on NO3-, CH4, GI, and N2O and negative on COD and NH4+. These results could help to monitor the environmental risk, evaluate the maturity, guide the irrigation scheme, and regulate the static storage condition of biogas slurry under different seasons.


Assuntos
Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Temperatura , Biocombustíveis , Metano/análise , Dióxido de Carbono/análise , Óxido Nitroso/análise , Solo/química
4.
Sci Total Environ ; 872: 162182, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36773909

RESUMO

Anaerobic digestion (AD) of nitrogen-rich substrates often suffers from the issue of ammonia inhibition. Although bioaugmentation has been used to assist AD with high ammonia concentration, the combined effect of domesticated syntrophic consortium (MC) together with biochar on ammonia inhibited AD are still unknown. In the present study, MC was adapted and enriched by purposive domestication. As a novel strategy, coconut shell-derived biochar was used as a carrier to aid the MC. The results showed that the digestion system deteriorated completely without the assistance of MC and biochar when the TAN concentration exceeded 8.0 g L-1. The combination of biochar and MC (B-MC treatment) could restore ammonia inhibition in 10 days and achieved a high methane yield of 357.5 mL g-1 volatile solid, which was 7.5 % higher than that of MC treatment. Syntrophomonas, Syntrophobacter, and Methanoculleus in MC played a critical role in reducing propionic acid and butyric acid content and efficiently producing methane. Their abundances increased 12-fold, 10-fold, and 2-fold, respectively. With the assistance of biochar, MC had a better performance in relieving ammonia inhibition. This could be attributed to two aspects. First, biochar encouraged the growth or colonization of key microorganisms such as propionate and butyrate oxidizing bacteria and ammonia-tolerant archaea. Second, biochar induced the growth of conductive microorganisms such as Geobacter. From the perspective of enzyme genes, biochar increased the abundance of related enzyme genes in butyrate and propionate degradation, acetoclastic and hydrogenotrophic pathways. In conclusion, MC combined with biochar is a potential approach to alleviate ammonia nitrogen inhibition.


Assuntos
Amônia , Propionatos , Anaerobiose , Amônia/metabolismo , Cocos , Metano , Reatores Biológicos/microbiologia , Ácido Butírico , Nitrogênio
5.
Waste Manag ; 159: 1-11, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36724571

RESUMO

Identifying the stability and phytotoxicity of liquid digestate (LD) is necessary for safe agricultural utilization. Storage temperature, method, and time are critical factors that affect the stability and phytotoxicity of LD. This study therefore aimed to explore the dynamics of stability, phytotoxicity, and microbial community of LD in cattle farms under different storage conditions. The results showed that the contents of solids, organic matter, nitrogen, and phosphorous decreased during storage and exhibited temperature dependency. Conversely, the seed germination index increased, which was negatively correlated with dissolved organic carbon and ammonium nitrogen and positively correlated with certain bacteria (Thermovirga and Fastidiosipila). Open storage and/or higher temperature were found to contribute to the stabilization efficiency and phytotoxicity disappearance of LD. Open storage of LD at 30 °C for 60 days and 20 °C for 90 days was safe for its agricultural utilization, while hermetic storage of LD at 30 °C for 120 days and 20 °C for 150 days was safe. However, for storage at 10 °C for 180 days, additional post-treatment is required.


Assuntos
Agricultura , Microbiota , Animais , Bovinos , Temperatura , Nitrogênio , Fazendas
6.
Water Res ; 230: 119583, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36638729

RESUMO

Ammonia inhibition is a challenging issue in the anaerobic digestion (AD) of nitrogen-rich substrates and hinders the energy recovery from organic wastes. Bioaugmentation is promising strategy to stabilize AD systems with high ammonia concentration. The composition of microbial consortia often determines their effectiveness in bioaugmentation. Up to now, the effect of various microbial consortia as biological additives on the AD systems is not fully understood. In this study, two microbial consortia (syntrophic microbial consortium, MC, and hydrogenotrophic methanogen consortium, SS) were obtained through two domestication methods, and were applied in a nitrogen-rich AD system. The results showed that the MC and SS treatments could restore AD performance within 21 days and 83 days, respectively. The recovery of digestion performance depended on the methanogenic archaea Methanospirillum, Methanothermobacter, and Methanoculleus in the early and later stages. Analysis of the 13C isotope indicated that both MC and SS enhanced the hydrogenotrophic pathway. The KEGG analysis showed that the MC not only promoted the key enzyme genes in the hydrogenotrophic pathway but also had a positive effect on the related enzyme genes of propionate and butyrate degradation, which was affected by the abundant short-chain fatty acids degrading bacteria, such as Syntrophomonas, Syntrophobacter, and Tissierella in the MC. After recovery of digestion performance, there was no significant difference (p > 0.05) in methane yield between the MS and SS treatments. Therefore, the best intervention period for bioaugmentation is when the digestion performance of the AD system is unstable.


Assuntos
Euryarchaeota , Consórcios Microbianos , Reatores Biológicos/microbiologia , Anaerobiose , Amônia , Metano , Aclimatação , Nitrogênio
7.
Waste Manag ; 168: 246-255, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37327518

RESUMO

With the accelerated construction of biogas plants, the amount of biogas residues are expanding. Composting has been widely implemented to deal with biogas residues. Aeration regulation is the main factor affecting the post-composting treatment of biogas residues as high-quality fertilizer or soil amendment. Therefore, this study aimed to investigate the impact of different aeration regulations on full-scale biogas residues compost maturity by controlling oxygen concentration under micro-aeration and aeration conditions. Results showed that micro-aerobic extended the thermophilic stage of 17 days at above 55 ℃ and facilitated the mineralization process of organic nitrogen into nitrate nitrogen to retain higher N nutrition levels compared to aerobic treatment. For biogas residues with high moisture, aeration should be regulated at different full-scale composting stages. Total organic carbon (TOC), NH4+-N, NO3--N, total potassium (TK), total phosphorus (TP) and the germination index (GI) could be used to evaluate stabilization, fertilizer efficiency and phytotoxicity of compost with frequent monitoring times. However, seedling growth trials were still necessary in full-scale composting plants when changing of composting process or biogas residues feedstock.


Assuntos
Compostagem , Biocombustíveis , Plântula/química , Fertilizantes , Solo/química , Nitrogênio/análise
8.
Sci Total Environ ; 878: 163116, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36996981

RESUMO

Excessive or insufficient supplementation of trace elements (TEs) limits the progression of anaerobic digestion. The main reason for this is the lack of sufficient understanding of digestion substrate characteristics, which significantly affects the demand for TEs. In this review, the relationship between TEs requirements and substrate characteristics is discussed. We mainly focus on three aspects. 1) The basis for TE optimization and existing problems: The optimization of TEs often based on the total solids (TS) or volatile solids (VS) of substrates, does not fully consider substrate characteristics. 2) TE deficiency mechanisms for different types of substrates: nitrogen-rich, sulfur-rich, TE-poor, and easily hydrolyzed substrates are the four main types of substrates. The mechanisms underlying TEs deficiency in the different substrates are investigated. 3) Regulation of TE bioavailability: characteristics of substrates affect digestion parameters, which disturb the bioavailability TE. Therefore, methods for regulating bioavailability of TEs are discussed.


Assuntos
Oligoelementos , Oligoelementos/análise , Resíduos Sólidos , Anaerobiose , Reatores Biológicos , Metano
9.
Sci Total Environ ; 820: 153244, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35065103

RESUMO

A large amount of food waste (FW) brings environmental pollution and sanitation problems. Anaerobic digestion (AD) is an effective technology to treat FW and generate biogas energy. This study investigated the effect of biochar supported nano zero-valent iron (BC-nZVI) on AD performance of FW. Results showed that the cumulative methane yield (CMY) increased by 21.52%-54.90% and the lag time decreased significantly with BC-nZVI. Under mesophilic and thermophilic condition, the peak of CMY was achieved at 178.82 ± 5.27 mL/g VS and 193.01 ± 6.81 mL/g VS with 5 g/L BC-nZVI, respectively. Besides, BC-nZVI stimulated hydrolysis process and reduced the inhibition of NH4+-N and volatile fatty acids accumulation, and it could improve the system stability. Structural equation model analysis indicated that digestion time, BC-nZVI, NH4+-N, temperature and total volatile fatty acid had significant effects on CMY, explaining 92.20% of its total variation. The metagenomic analysis of key microorganisms and related metabolism pathways involved in AD system was further investigated. The results suggested that BC-nZVI contributed to strengthen methanogenesis through enriching the various predominant methanogenic pathways and activating most enzymes related to methane metabolism. BC-nZVI could improve the AD system function and provided a better AD performance by shifting the microbial communities and altering functional genes. This study provided a theoretical basis for BC-nZVI applications and improvements in AD process of FW.


Assuntos
Ferro , Eliminação de Resíduos , Anaerobiose , Carvão Vegetal , Alimentos , Ferro/química , Metagenômica , Metano/metabolismo , Esgotos/química
10.
Bioresour Technol ; 351: 126924, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35272033

RESUMO

This paper reviewed the mechanisms of biochar in relieving ammonia inhibition. Biochar affects nitrogen-rich waste's anaerobic digestion (AD) performance through four ways: promotion of direct interspecies electron transfer (DIET) and microbial growth, adsorption, pH buffering, and provision of nutrients. Biochar enhances the DIET pathway by acting as an electron carrier. The role of DIET in relieving ammonia nitrogen may be exaggerated because many related studies don't provide definite evidence. Therefore, some bioinformatics technology should be used to assist in investigating DIET. Biochar absorbs ammonia nitrogen by chemical adsorption (electrostatic attraction, ion exchange, and complexation) and physical adsorption. The absorption efficiency, mainly affected by the properties of biochar, pH and temperature of AD, can reach 50 mg g-1 on average. The biochar addition can buffer pH by reducing the concentrations of VFAs, alleviating ammonia inhibition. In addition, biochar can release trace elements and increase the bioavailability of trace elements.


Assuntos
Nitrogênio , Oligoelementos , Amônia , Anaerobiose , Carvão Vegetal , Metano
11.
Waste Manag ; 144: 490-501, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35462293

RESUMO

Biogas slurry(BS) from food waste anaerobic fermentation coexisted a lot of salinity that could damage soil and crops health. So, this study was to explore the effect of the application of biogas slurry on soil salinization in 1 âˆ¼ 4 cm, 4-6 cm and 6 âˆ¼ 8 cm soil layers every 10 days, Chinese cabbage growth and rhizobacteria. The results indicated that ≤ 10% concentration of biogas slurry was uninjurious for soil and plant, the dry weight growth rate was 73.7% compared with CK, long term application should be further evaluated the potential risk of salinity on underground water and human health. As for high concentration of biogas slurry ≥ 10% concentration of biogas slurry could inhibit the seed germination and root elongation, and the germination percentage was declined from 87.6% to 2.4%, but 50% and 100% concentration of biogas slurry showed a promotion of crop growth because of sufficient nutrition. However, the potential accumulation of salinity could be seen in high concentration of biogas slurry for long term application especially in top1-4 cm soil. Correlation analysis showed that Cl- was the main factor resulting high EC in all soil layers. 16S rRNA sequencing showed that UCG-004, Ketobacter, Sphingopyxis and RB41 could be regard as the indicators for determining the potential jeopardize on soil environmental by high salinity from biogas slurry.


Assuntos
Fertilizantes , Eliminação de Resíduos , Anaerobiose , Biocombustíveis , Alimentos , Humanos , RNA Ribossômico 16S , Solo
12.
Bioresour Technol ; 350: 126909, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35227919

RESUMO

It is currently unclear whether trace elements (TEs) deficiency is due to low bioavailability or low absolute TEs concentrations, especially in high-pH anaerobic digestion (AD) systems. A mixed solution of TEs and EDTA-Na2 were used separately in mono-AD of chicken manure (CM) leachate to investigate this research gap. The results showed relatively low bioavailability of Fe, Mn, and Zn. The bioavailability of all TEs remained stable along with a gradual increase in total ammonia nitrogen concentration. Both TE and EDTA-Na2 supplementation improved the bioavailability of TEs, but TEs supplementation also gave a high proportion of soluble TEs. Adding TEs improved methane production efficiency (+38.3%) and decreased the H2S content. The exchangeable fraction of specific TE (Mo) in H2/CO2 pathway was higher in the TEs treatment. TEs bioavailability and absolute concentrations of available TEs are critical aspects that need to be scrutinized to assess the risk of TEs deficiency.


Assuntos
Esterco , Oligoelementos , Anaerobiose , Animais , Disponibilidade Biológica , Reatores Biológicos , Galinhas , Metano
13.
Waste Manag ; 149: 11-20, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35691057

RESUMO

Ensiling is an effective storage strategy for agricultural biomass, especially for energy crops (mainly energy grasses and maize). However, the ensiling of excessively wilted crop straw is limited due to material characteristics, such as a high lignocellulosic content and low water-soluble carbohydrate and moisture contents. In this study, acetic acid or hetero-fermentative lactic acid bacterial community (hetero-fermentative LAB) were employed as silage additives to improve the ensiling process of excessively wilted wheat straw (EWS). The results showed that the additives inhibited the growth of Enterobacteriaceae and Clostridium_sensu_stricto_12, whose abundances decreased from 55.8% to 0.03-0.2%, respectively. The growth of Lactobacillus was accelerated, and the abundances increased from 1.3% to 80.1-98.4% during the ensiling process. Lactic acid fermentation was the dominant metabolic pathway in the no additive treatment. The additives increased acetic acid fermentation and preserved the hemicellulose and cellulose contents, increasing the methane yield by 17.7-23.9%. This study shows that ensiling with acetic acid or hetero-fermentative LAB is an effective preservation and storage strategy for efficient methane production from EWS.


Assuntos
Ácido Acético , Lactobacillales , Fermentação , Ácido Láctico , Metano , Silagem/análise , Silagem/microbiologia , Triticum
14.
Bioresour Technol ; 302: 122742, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32007856

RESUMO

Recycling of biogas residues from corn stover anaerobic digestion is crucial for the development of biogas industry. Full-scale composting process is the feasible way to convert biogas residues to fertilizer. The aim of the study was to explore the feasibility of full-scale composting process to dispose biogas residue to fertilizer, and to evaluate the quality of the compost. The results showed the biogas residues could rapidly reach the thermophilic stage and last at least 20 days, NH4+-N, TOC and C/N decreased along with the composting process, while TP, TK and NO3--N showed an opposite trend. Germination index(GI) and seedling growth index showed that raw biogas residues was toxic for plant, but the GI and seedling growth index were increased during the composting process, except for the cooling stage sample. Anaerolineaceae and Limnochordaceae were the main bacteria involved in the composting process, and Chaetomium was the most important fungus.


Assuntos
Compostagem , Anaerobiose , Biocombustíveis , Fertilizantes , Solo , Zea mays
15.
AMB Express ; 10(1): 216, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33315172

RESUMO

Synthetic fungicides are eco-unfriendly to agriculture and the environment. Agricultural Jiaosu (AJ), which originates from organic wastes, has the potential to be a substitute for synthetic fungicides. In this study, the characteristics of AJ and its antifungal activity against Botrytis cinerea were investigated for the first time. AJ was rich in lactic acid (4.46 g/L), acetic acid (1.52 g/L), Lactobacillus (72.45%) and Acetobacter (15.23%), which was a microbial ecosystem consisting of acid-based substances (AS) and beneficial microorganisms (BM). The results of the antifungal assays suggested that B. cinerea was effectively inhibited by AJ, with the half-maximal inhibitory concentration (IC50) of 9.24%. AJ showed the strongest and most-lasting inhibitory effect compared to cell-free supernatant and microbial solution of AJ, indicating that AS and BM and their synergistic effect contributed to the antifungal activity of AJ. Two-step inhibition' is an antifungal mode of AJ. Firstly, AS not only inhibited the pathogen directly but also provided a dominant niche for BM of AJ. Then, BM in AJ, especially Acetobacter, proliferated and metabolized acetic acid continuously. Thus, AJ achieved high-efficiency and long-acting inhibition. AJ is a promising biological agent considering its features of an eco-friendly, low-cost and easy-to-operate biological agent in rural areas.

16.
Bioresour Technol ; 276: 281-287, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30640023

RESUMO

Recycling of BR and SMS are crucial for the development of biogas industry and commercial mushroom cultivation. The seed germination test is limited to examine the maturity of compost because of lacking the effect of insoluble part on plant growth. The aim of this study was to evaluate the maturity of compost by analysis the relationship between agronomic parameters of plant growth with physicochemical parameters of compost. The thermophilic period (over 50 °C) was lasted 52 days. TOC, C/N, AP and NH4+-N was decreased along with composting process, while TK, TP, AK and NO3--N showed an opposite trend. As for seedling quality, the raw material (T0) showed the worst plant growth but the 100% compost (T1) showed better seedling quality compared with commercial seedlings. According to the analysis of Spearman correlation, the results indicated that TOC, C/N, NH4+-N, NO3--N, AK and lignocellulose can be used to evaluate compost maturity.


Assuntos
Agaricales/metabolismo , Compostagem , Biocombustíveis
17.
Bioresour Technol ; 251: 22-30, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29257993

RESUMO

In this study, the impact of pig manure on the maturity of compost consisting of spent mushroom substrate and rice husks was accessed. The results showed that the addition of pig manure (SMS-PM) reached 50°C 5days earlier and lasted 15days longer than without pig manure (SMS). Furthermore, the addition of pig manure improved nutrition and germination index. High-throughput 16S rRNA pyrosequencing was used to evaluate the bacterial and fungal composition during the composting process of SMS-PM compared to SMS alone. The SMS treatment showed a relatively higher abundance of carbon-degrading microbes (Bacillaceae and Thermomyces) and plant pathogenic fungi (Sordariomycetes_unclassified) at the end of the compost. In contrast, the SMS-PM showed an increased bacterial diversity with anti-pathogen (Pseudomonas). The results indicated that the addition of pig manure improved the decomposition of refractory carbon from the spent mushroom substrate and promoted the maturity and nutritional content of the compost product.


Assuntos
Compostagem , Esterco , Agaricales , Animais , Oryza , RNA Ribossômico 16S , Solo , Suínos
18.
Bioresour Technol ; 241: 1050-1059, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28651321

RESUMO

Molasses is a typical feedstock for fermentation, but the effluent is hard to treat. In this study, molasses containing a high concentration of organic matter was treated by a two-stage Fix-bed reactor system with an increased organic loading rate (OLR). The results indicated at high molasses loading rate, the two-stage system was more efficient (i.e. organic matter removal, the COD of effluent and biogas production) than the single-stage system. The relative abundance of Anaerolineaceae and W5_norank was higher in the first stage (R1), where these organisms digest carbohydrates, while the second stage (R2) had higher relative abundance of Synergistaceae and SB-1_norank, which digest VFAs and decomposition-resistant compounds to produce compounds used by hydrogen methanogens. The qPCR analysis demonstrated that the Methanosaetaceae dominated the archaeal community in the first stage (R1), while Methanomicrobiales and Methanobacteriales were predominant in the second stage (R2), where they were involved in hydrogen production.


Assuntos
Reatores Biológicos , Melaço , Metano , Methanosarcinales , Esgotos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA