Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 29(45): e202301262, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37272418

RESUMO

Cyano-bridged 4d-4f molecular nanomagnets have re-called increasing research interests in molecular magnetism since they offer more possibilities in achieving novel nanomagnets with versatile structures and magnetic interactions. In this work, four ß-diketone ligands bearing different substitution N-sites were designed and synthesized, namely 1-(2-pyridyl)-3-(3-pyridyl)-1,3-propanedione (HL1 ), 1,3-Bis (3-pyridyl)-1,3-propanedione (HL2 ), 1-(4-pyridyl)-3-(3-pyridyl)-1,3-propanedione (HL3 ), and 1,3-Bis (4-pyridyl)-1,3-propanedione (HL4 ), to tune the magnetic relaxation behaviors of cyano-bridged {DyIII MoV } systems. By reacting with DyCl3 ⋅ 6H2 O and K4 Mo(CN)8 ⋅ 2H2 O, four cyano-bridged complexes, namely {[Dy[MoV (CN)8 ](HL1 )2 (H2 O)3 ]} ⋅ 6H2 O (1), {[Dy[MoV (CN)8 ](HL2 )(H2 O)3 (CH3 OH)]}2 ⋅ 2CH3 OH ⋅ 3H2 O (2), {[Dy[MoV (CN)8 ](HL3 )(H2 O)2 (CH3 OH)] ⋅ H2 O}n (3), and {[Dy[MoV (CN)8 ](HL4 )2 (H2 O)3 ]} ⋅ 2H2 O⋅CH3 OH (4) were obtained. Structural analyses revealed that 1 and 4 are binuclear complexes, 2 has a tetragonal structure, and 3 exhibits a stair-like polymer chain structure. The DyIII ions in all complexes have eight-coordinated configurations with the coordination spheres DyO7 N1 for 1 and 4, DyO6 N2 for 2, and DyO5 N3 for 3. Magnetic measurements indicate that 1 is a zero-field single-molecule magnet (SMM) and complexes 2-4 are field-induced SMMs, with complex 4 featuring a two-step relaxation process. The magnetic characterizations and ab initio calculations revealed that changing the N-sites in the ß-diketone ligands can effectively alter the structures and magnetic properties of cyano-bridged 4d-4f nanomagnets by adjusting the coordination environments of the DyIII centers.

2.
Inorg Chem ; 62(14): 5543-5552, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36995797

RESUMO

Bistable materials with multiphysical channels, such as optical, electrical, and magnetic properties, have been paid dramatic attention due to their alternativity of the signal status in electronic devices. Herein, three stable supramolecular radicals ([(NH3-TEMPO)(18-crown-6)][XF6] (1, X = P; 2, X = As; 3, X = Sb)) were synthesized and characterized. The former two molecules present ferroelectric phase transitions around 381.7 and 382.7 K, respectively, with bistability in dielectric property and second-harmonic generation (SHG) effect, which are first found in supramolecular radicals. Their ferroelectric transition and bistable properties are generated from a net polar crystal structure owing to the static ordered packing of NH3-TEMPO radical cations in the low-temperature phase (LTP) to a nonpolar structure owing to a distinctive symmetric scissoring motion of NH3-TEMPO radical cations between two 18-crown-6 molecules in the high-temperature phase (HTP). Both of them exhibit paramagnetic properties in HTP and LTP states since no intermolecular spin-spin interaction occurs due to the long distances among the radicals in their crystals. These results make us possible to design bistable optoelectronic radical materials with bistability in magnetic property in the future.

3.
Angew Chem Int Ed Engl ; 62(28): e202302815, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37178444

RESUMO

Colossal and anisotropic thermal expansion is a key function for microscale or nanoscale actuators in material science. Herein, we present a hexanuclear compound of [(Tp*)FeIII (CN)3 ]4 [FeII (Ppmp)]2 ⋅2 CH3 OH (1, Tp*=hydrotris(3,5-dimethyl-pyrazol-1-yl)borate and Ppmp=2-[3-(2'-pyridyl)pyrazol-1-ylmethyl]pyridine), which has a rhombic core structure abbreviated as {FeIII 2 FeII 2 }. Magnetic susceptibility measurements and single-crystal X-ray diffraction analyses revealed that 1 underwent thermally-induced spin transition with the thermal hysteresis. The FeII site in 1 behaved as a spin crossover (SCO) unit, and significant deformation of its octahedron was observed during the spin transition process. Moreover, the distortion of the FeII centers actuated anisotropic deformation of the rhombic {FeIII 2 FeII 2 } core, which was spread over the whole crystal through the subsequent molecular rearrangements, leading to the colossal anisotropic thermal expansion. Our results provide a rational strategy for realizing the colossal anisotropic thermal expansion and shape memory effects by tuning the magnetic bistability.

4.
Inorg Chem ; 61(15): 5855-5860, 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35377631

RESUMO

The incorporation of two different cyanide building blocks of [(TpR)FeIII(CN)3]- and [AuI(CN)2]- into one molecule afforded a novel hexanuclear [FeIII2FeII2AuI2] complex (1·2Et2O), in which the cyanide-bridged [FeIII2FeII2] square was further grafted by two [AuI(CN)2]- fragments as long arms in syn orientations. Complex 1·2Et2O undergoes a gradual spin crossover (SCO) ffrom low-spin (LS) to high-spin (HS) state for the Fe(II) centers upon desolvation. Remarkably, its desolvated phase (1) exhibits a reversible but atypical two-step (sharp-gradual) SCO behavior with considerable hysteresis (21 K). Variable-temperature single-crystal X-ray structural studies reveal that the hysteretic spin transition takes place synchronously with the concerted displacive motions of the molecules, representing another rare example including multistep and hysteretic spin transitions due to the synergetic SCO and structural phase transition.

5.
Angew Chem Int Ed Engl ; 61(34): e202208886, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35753999

RESUMO

Materials showing synergy of magnetic and dielectric transitions are promising candidates for future molecular devices. The challenge is how to realize synergy between spin and dielectric transitions with responses to external stimuli. Herein, we design a 2D spin crossover (SCO) complex, [FeII (dpa)][(pzTp)FeIII (CN)3 ]2 (1) (dpa=1,2-bis(4-pyridyl)ethyne and pzTp=tetrakis(pyrazolyl)borate). The local structural changes about the FeII ion were propagated to the whole crystal through the rigid bridging ligands (dpa), leading to elastic interactions to realize the abrupt SCO and rotational movements of polar apical pyrazolyl rings in the [(pzTp)FeIII (CN)3 ]- units. Dielectric measurements confirmed a substantial dielectric change (Δϵ'=2.3) upon the spin transition. This work provides a rational strategy to couple the spin transition and rotation of polar components, which is crucial for the synergetic switch of magnetism and dielectricity.

6.
Angew Chem Int Ed Engl ; 61(11): e202115367, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-34971479

RESUMO

Manipulation of multi-functions in molecular materials is promising for future switching and memory devices, although it is currently difficult. Herein, we assembled the asymmetric {Fe2 Co} unit into a cyanide-bridged mixed-valence chain {[(Tp)Fe(CN)3 ]2 Co(BIT)} ⋅ 2CH3 OH (1) (Tp=hydrotris(pyrazolyl)borate and BIT=3,4-bis-(1H-imidazol-1-yl)thiophene), which showed reversible multi-phase transitions accompanied by photo-switchable single-chain magnet properties and a dielectric anomaly. Variable-temperature X-ray structural studies revealed thermo- and photo-induced selective electron transfer (ET) between the Co and one of the Fe ions. Alternating-current magnetic susceptibility studies revealed that 1 displayed on and off single-chain magnet behavior by alternating 946-nm and 532-nm light irradiation. A substantial anomaly in the dielectric constant was discovered during the electron transfer process, which is uncommon in similar ET complexes. These findings illustrate that 1 provided a new platform for multi-phase transitions and multi-switches adjusted by selective metal-to-metal ET.

7.
Angew Chem Int Ed Engl ; 61(45): e202208208, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36103279

RESUMO

Molecular materials possessing photo-tunable polarization switching is promising for optical switches, smart sensors, and data storage devices. However, it is challenging to devise a molecular material featuring simultaneous switchable magnetic and dielectric properties with regard to non-invasive and convenient light stimulus. Herein, we report a new Hofmann-type metal-organic framework (MOF) {Fe(bpt)[Pt(CN)4 ]} ⋅ 0.5anth (1, bpt=2,5-bis(4-pyridyl)thiophen; anth=anthracene), which displays thermo- and photo-switchable magnetic and dielectric properties. Photo-monitored structural analyses revealed that it was the photo-induced deformation of FeII coordination sphere and relative movement of guest anthracene that resulted in the variation of the local electric dipoles. These findings provide a new strategy to realize polarization switching through the light-induced spin crossover, and would be of fundamental significance for future photo-switchable and multifunctional materials.

8.
Inorg Chem ; 60(3): 1315-1319, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33443994

RESUMO

New kinds of diradical rare-earth metal complexes supported by diazabutadiene (DAD) ligands, [(DAD)2LnN(TMS)2] (1; Ln = Dy, Lu; TMS = SiMe3), were synthesized and studied. They showed a new [radical-Ln-radical] alignment with distorted square-pyramidal geometry. Structural and density functional theory analysis illustrated the radical anionic nature of the ligands. Magnetic studies revealed antiferromagnetic coupling of the two radicals in 1-Lu. 1-Dy showed typical single-molecule-magnet (SMM) behavior with an effective energy barrier of 231 K, which is much higher than those of similar radical-containing SMMs. Magnetostructural analysis suggests that the anionic [N(TMS)2]- group plays a vital role in the SMM property. This study provides a new platform for further improving the performance of radical-Ln SMMs.

9.
Angew Chem Int Ed Engl ; 60(19): 10537-10541, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33569868

RESUMO

The production of photo-switchable molecular nanomagnets with substantial coercivity, which is indispensable for information storage and process applications, is challenging. Introducing photo-responsive spin-crossover units provides a feasible means of controlling the magnetic anisotropy, interactions, and overall nanomagnet properties. Herein, we report a cyanide-bridged chain 1⋅12H2 O ({[(Pz Tp)FeIII (CN)3 ]2 FeII (Pmat)2 }n ⋅12 H2 O) generated by linking the FeII -based spin-crossover unit with the [(Pz Tp)Fe(CN)3 ]- (Pz Tp: tetrakis(pyrazolyl)borate) building block in the presence of asymmetric ditopic ligand Pmat ((4-pyridine-4-yl)methyleneamino-1,2,4-triazole). Structural characterization revealed that the introduction of this asymmetric ligand led to a distorted coordination environment of FeII ions, which were equatorially coordinated by four cyanide N atoms, and apically coordinated by one pyridine N atom and one triazole N atom. Upon 808-nm light irradiation, 1⋅12H2 O underwent photoinduced spin-crossover and exhibited single-chain magnet behavior with a coercive field of up to 1.3 T. This represents a 3d-based photoinduced single-chain magnet exhibiting pronounced hysteresis.

10.
Acc Chem Res ; 52(5): 1369-1379, 2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-30973220

RESUMO

The spin transition of metal ions involves interconversion between electron configurations exhibiting considerably different functions and plays a substantial role in the chemical, physical, and biological fields. The photoinduced spin transition offers a promising approach to tune various physical properties with high spatial and temporal resolutions for producing smart multifunctional materials not only to explore their basic science but also to satisfy the demands of the next-generation photoswitchable-molecule-based devices. Therefore, it is attracting considerable interest to utilize photoinduced spin transition to simultaneously tune multifunctions. However, two issues are challenging in obtaining reversible and swift manipulation of functions: (1) the interconversion between different electron configurations of photoresponsive units should be reversibly switched via photoinduced spin transition; (2) effective coupling should be built between the photoresponsive and functional units to produce photoswitchable functions utilizing photoinduced spin transition. In this Account, we will review our recent advances in the usage of spin transition of metal ions as actuators for tuning the magnetic, dielectric, fluorescence, and mechanical properties, wherein the role of a photoswitchable spin transition is highlighted. We mainly focus on the study of two spin-transition categories, including spin-crossover (SCO) of one metal ion and metal-to-metal charge transfer (MMCT). Initially, we will describe a strategy for developing photoinduced reversible SCO and MMCT. The role of flexible intermolecular interactions, in particular, π···π interactions, is discussed with respect to a photoinduced reversible MMCT. Then, the SCO and MMCT units were assembled using metallocyanate building blocks to form a chain, wherein the spin states, anisotropy, and magnetic coupling interactions can be photoswitched to tune the single-chain magnet behavior. Besides magnetic properties, the photoinduced spin transition that is associated with the concomitant changing of charge distribution, bond lengths, and absorption spectra can be utilized to tune the multifunctions. Therefore, the transfer of an electron from a central cobalt site to one of the two iron sites in linear trinuclear Fe2Co compounds resulted in the transformation of a centrosymmetric nonpolar molecule into an asymmetric polar molecule, and the molecular electric dipole and dielectric properties can be reversibly switched. Moreover, the spin transition usually involved significant expansion or contraction of the coordination sphere of metal ions because of the population/depopulation of the antibonding eg orbitals. Therefore, colossal positive and negative thermal expansion behaviors were achieved in a layered compound by manipulating the spin-transition process and the rotation of the functional units, thereby providing a strategy for synthesizing phototunable nanomotors. Photoinduced spin transition can also be used to modulate the fluorescence properties by controlling the energy transfer between the fluorescent ligands and the metal sites showing SCO. Finally, we will provide a perspective and detail the remaining challenges that are associated with this research area. We believe that an increasing number of fascinating photoswitchable SCO and MMCT systems will emerge in the near future and that the materials exhibiting various properties and functions that can be manipulated using photoinduced spin transition will provide novel opportunities for the development of smart multifunctional materials and devices.

11.
Inorg Chem ; 59(11): 7398-7407, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32401025

RESUMO

The development of new spin-crossover complexes provides novel promising switching materials with significant potential at the molecular level. Ter-imine-type molecules represent one of the important classes of ligands in creating SCO-active complexes. Herein we report a family of mononuclear Fe(II) SCO-active compounds constructed from a new type of ter-imine ligand named the thio-pybox ligand (2,6-bis(4,4-dimethyl-4,5-dihydrothiazol-2-yl)pyridine, L1). Through the variation of counteranions, some cases display complete SCO and with T1/2 near ambient temperature. Among them, annealed [FeII(L1)2](ClO4)2 [1(ClO4)] shows T1/2↓ and T1/2↑ as 319 and 349 K, respectively. The wide thermal hysteresis of ΔT = 30 K originated from the weak interaction between complex cations and counteranions in the crystal lattice. Impressively, its high-spin population can be increased considerably by annealing at high temperature. The metastable high-spin phase is stable in the successive magnetic measurements and would gradually relax to its initial state with high population of low-spin configuration at ambient temperature. In acetonitrile-diluted solution, 1(ClO4) still maintains SCO with an estimated T1/2 at 240 K. Differential scanning calorimetry discloses the structural phase at around 355 K in the first heating process and the increase in the high-spin population concomitant with annealing was also corroborated by 57Fe Mössbauer measurements. Additionally, the influences on SCO by counteranion and ligand structure are investigated, which show that the fine tuning of complex structures can affect the behavior of the spin state significantly. Finally, magneto-structural correlation studies were performed on the structures of 1(ClO4) and its oxygen analogue at multiple temperatures. The analyses of some structural parameters, including terminal N···N donor separation, bite angle, patulous angle, and the root mean squared deviation indicate that the replacement of the oxygen atom with a sulfur atom can effectively improve the flexibility and release the steric strain and thus tune the SCO toward ambient temperature. Our research demonstrates the rational design of the ligand can lead to new SCO-active compounds with high performance.

12.
Angew Chem Int Ed Engl ; 59(38): 16393-16397, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32495497

RESUMO

It is promising and challenging to manipulate the electronic structures and functions of materials utilizing both metal-to-metal charge transfer (MMCT) and spin-crossover (SCO) to tune the valence and spin states of metal ions. Herein, a metallocyanate building block is used to link with a FeII -triazole moiety and generates a mixed-valence complex {[(Tp4-Me )FeIII (CN)3 ]9 [FeII 4 (trz-ph)6 ]}⋅[Ph3 PMe]2 ⋅[(Tp4-Me )FeIII (CN)3 ] (1; trz-ph=4-phenyl-4H-1,2,4-triazole). Moreover, MMCT occurs between FeIII and one of the FeII sites after heat treatment, resulting in the generation of a new phase, {[(Tp4-Me )FeII (CN)3 ][(Tp4-Me )FeIII (CN)3 ]8 [FeIII FeII 3 (trz-ph)6 ]}⋅ [Ph3 PMe]2 ⋅[(Tp4-Me )FeIII (CN)3 ] (1 a). Structural and magnetic studies reveal that MMCT can tune the two-step SCO behavior of 1 into one-step SCO behavior of 1 a. Our work demonstrates that the integration of MMCT and SCO can provide a new alternative for manipulating functional spin-transition materials with accessible multi-electronic states.

13.
Angew Chem Int Ed Engl ; 59(31): 13037-13043, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32347593

RESUMO

We investigate a family of dinuclear dysprosium metallocene single-molecule magnets (SMMs) bridged by methyl and halogen groups [Cp'2 Dy(µ-X)]2 (Cp'=cyclopentadienyltrimethylsilane anion; 1: X=CH3 - ; 2: X=Cl- ; 3: X=Br- ; 4: X=I- ). For the first time, the magnetic easy axes of dysprosium metallocene SMMs are experimentally determined, confirming that the orientation of them are perpendicular to the equatorial plane which is made up of dysprosium and bridging atoms. The orientation of the magnetic easy axis for 1 deviates from the normal direction (by 10.3°) due to the stronger equatorial interactions between DyIII and methyl groups. Moreover, its magnetic axes show a temperature-dependent shifting, which is caused by the competition between exchange interactions and Zeeman interactions. Studies of fluorescence and specific heat as well as ab initio calculations reveal the significant influences of the bridging ligands on their low-lying exchange-based energy levels and, consequently, low-temperature magnetic properties.

14.
Inorg Chem ; 58(3): 1806-1814, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30576111

RESUMO

The synthesis, excited-state dynamics, and biological application of luminescent lanthanide salen complexes (Ln = Lu, Gd, Eu, Yb, salen = N, N'-bis(salicylidene)ethylenediamine-based ligands) with sandwich structures are described. Among them, Lu(III) complexes show unusually strong ligand-centered fluorescence with quantum yields up to 62%, although the metal center is close to a chromophore ligand. The excited-state dynamic studies including ultrafast spectroscopy for Ln-salen complexes revealed that their excited states are solely dependent on the salen ligands and the ISC rates are slow (108-109 s-1). Importantly, time-dependent density functional theory calculations attribute the low energy transfer efficiency to the weak spin-orbital coupling (SOC) between the singlet and triplet excited states. More importantly, Lu-salen has been applied as a molecular platform to construct fluorescence probes with organelle specificity in living cell imaging, which demonstrates the advantages of the sandwich structures as being capable of preventing intramolecular metal-ligand interactions and behaviors different from those of the previously reported Zn-salens. Most importantly, the preliminary study for in vivo imaging using a mouse model demonstrated the potential application of Ln coordination complexes in therapeutic and diagnostic bioimaging beyond living cells or in vitro.


Assuntos
Complexos de Coordenação/química , Teoria da Densidade Funcional , Etilenodiaminas/química , Corantes Fluorescentes/química , Elementos da Série dos Lantanídeos/química , Imagem Óptica , Animais , Sobrevivência Celular , Complexos de Coordenação/síntese química , Cristalografia por Raios X , Transferência de Energia , Fluorescência , Corantes Fluorescentes/síntese química , Células HeLa , Humanos , Camundongos , Camundongos Nus , Modelos Moleculares , Estrutura Molecular , Neoplasias Experimentais/diagnóstico por imagem , Processos Fotoquímicos , Fatores de Tempo
15.
Angew Chem Int Ed Engl ; 58(47): 17009-17015, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31512361

RESUMO

Understanding the effects of intermolecular interactions on metal-to-metal charge transfer (MMCT) is crucial to develop molecular devices by grafting MMCT-based molecular arrays. Herein, we report a series of solvent-free {Fe2 Co2 } compounds sharing the same cationic tetranuclear {[Fe(PzTp)(CN)3 ]2 [Co(dpq)2 ]2 }2+ (PzTp- =tetrakis(pyrazolyl)borate, dpq=dipyrido[3,2-d:2',3'-f]quinoxaline) square units but having anions with different size, including BF4 - , PF6 - , OTf- , and [Fe(PzTp)(CN)3 ]- . Intermolecular π⋅⋅⋅π interactions between dpq ligands, which coordinate to cobalt ions in the {[Fe(PzTp)(CN)3 ]2 [Co(dpq)2 ]2 }2+ units, can be modulated by introducing different counterions, regulating the distortion of the CoN6 octahedron and ligand field around the cobalt ions. This change results in different MMCT behavior. Computational analyzes reveal the substantial role of the intermolecular interactions tuned by the presence of different counteranions on the MMCT behavior.

16.
Inorg Chem ; 57(3): 1332-1341, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29336570

RESUMO

The design of near-infrared (NIR) emissive lanthanide (Ln) complexes sensitive to external stimulus is fundamentally important for the practical application of Ln materials. Because NIR emission from Ln is extremely sensitive to X-H (X = C, N and O) bond vibration, we herein report to harness the secondary coordination sphere to design NIR luminescent lanthanide sensors. Toward this goal, we designed and synthesized two isomeric [(η5-C5H5)Co{(D3CO)2P = O}3]-Yb(III)-7,8,12,13,17,18-hexafluoro-5,10,15,20-tetrakis(pentafluorophenyl)porpholactol NIR emitters, Yb-up and Yb-down, based on the stereoisomerism of porphyrin peripheral ß-hydroxyl group. Yb-up, in which ß-OH is at the same side of Yb(III) center, can form an intramolecular hydrogen bond with the axial Kläui ligand, whereas Yb-down cannot because its ß-OH is opposite to Yb(III) center. X-ray crystal structures and photophysical studies suggested that the intramolecular hydrogen bond plays important roles on the NIR luminescence of ytterbium(III), which shortens the distance between ß-OH and Yb(III) and facilitates the nonradiative deactivation of Ln excited state. Importantly, Yb-up/down were demonstrated to be highly sensitive toward temperature and viscosity. The PMMA polymer using Yb-up as the dopant NIR emitter showed thermosensitivity up to 6.0% °C-1 in the wide temperature range of 77-400 K, higher than that of Yb-down (3.8% °C-1). These complexes were also explored as the first NIR viscosity sensor, revealing their potential applications as optical sensors without visible light interference. This work demonstrates the importance of secondary coordination sphere on designing NIR Ln luminescent functional materials.

17.
Angew Chem Int Ed Engl ; 57(38): 12216-12226, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-29736925

RESUMO

Metal-to-metal charge transfer (MMCT) describes electron transfer between metal ions, to generate valence isomers with markedly different electronic configurations. In particular, MMCT changes the spin states of single-metal sites and the coupling interactions between them, while also changing the symmetry in charge distribution. The result is a drastic change in both magnetic and electric properties of the affected material. Moreover, MMCT causes significant variation in bond length and absorption spectra, and induces unusual thermal expansion and photochromic behavior. Thus, materials demonstrating MMCT in response to external stimuli are excellent candidates for switchable multifunctional devices with synergistic responses. In this Minireview, recent progress in utilizing MMCT units as actuators to tune magnetic, electric, thermal expansion, and photochromic properties in cyanide-bridged systems is highlighted, and emphasis is given to the remaining challenges and future perspectives in the field.

18.
Angew Chem Int Ed Engl ; 57(17): 4673-4676, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29484793

RESUMO

It is very challenging to synthesize stable trivalent rare-earth complexes in which the coordination number is lower than 3 for the high oxidation state, there is a large ion radius and nearly non-bonding character of trivalent lanthanide ions. The bulky phenol ligand ArOH (Ar=2,6-Dipp2 C6 H3 , Dipp=2,6-diisopropylphenyl) was utilized to construct low-coordinate lanthanide compound [(ArO)Ln(OAr')] (Ar'=6-Dipp-2-(2'-i Pr-6'-CHMe(CH2- )C6 H3 )C6 H3 O- ; Ln=Tb, Dy, Ho, Er, Tm). These complexes and the free ligand ArOH were isostructural. Magnetic measurements and theoretical studies demonstrated that both the oblate-type dysprosium and prolate-type erbium analogues exhibited single-ion magnet (SIM) behavior. The bulky phenol ligands provided strong uniaxial ligand field, making the dysprosium SIM possessing blocking barrier up to 961 K.

19.
Angew Chem Int Ed Engl ; 57(28): 8468-8472, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29770545

RESUMO

Magnetic and dielectric properties have been tuned simultaneously by external stimuli with rapid and sensitive response, which is crucial to monitor the magnetic state via capacitive measurement. Herein, positive charged FeII ions were linked via negative charged [(Tp)FeIII (CN)3 ]- (Tp=hydrotris(pyrazolyl)borate) units to form a neutral chain. The spin-crossover (SCO) on FeII sites could be sensitively triggered via thermal treatment, light irradiation, and pressure. SCO switched the spin state of the FeII ions and antiferromagnetic interactions between FeIII and FeII ions, resulting in significant change in magnetization. Moreover, SCO induced rotation of negative charged [(Tp)FeIII (CN)3 ]- units, generating dielectric anomaly due to geometric change of charges distribution. This work provides a rational way to manipulate simultaneous variations in magnetic and dielectric properties utilizing SCO as an actuator to tune spin arrangement, magnetic coupling, and charge distribution.

20.
Acc Chem Res ; 49(11): 2381-2389, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27768294

RESUMO

Single-molecule magnets (SMMs) can retain their magnetization status preferentially after removal of the magnetic field below a certain temperature. The unique property, magnetic bistable status, enables the molecule-scale SMM to become the next-generation high-density information storage medium. SMMs' new applications are also involved in high-speed quantum computation and molecular spintronics. The development of coordination chemistry, especially in transition metal (3d) and lanthanide (4f) complexes, diversifies SMMs by introducing new ones. In both 3d and 4f SMMs, the ligands play a fundamental role in determining the SMMs' magnetic properties. The strategies for rationally designing and synthesizing high-performance SMMs require a comprehensive understanding of the effects of a crystal field. In this Account, we focus mainly on the magneto-structural correlations of 4f or 3d single-ion magnets (SIMs), within which there is only one spin carrier. These one-spin carrier complexes benefit from getting rid of exchange interactions and relatively large distances of magnetic centers in the lattice, providing the ease to construct high-performance SIMs from the crystal field perspective. We will briefly introduce the crystal field approach for 4f or 3d complexes and then the magnetic anisotropy analysis via the displaced-charge electrostatic model. This idea has been proposed for years, and the related work is also highlighted. The angular-resolved magnetometry method, predominating in determining the magnetic anisotropic axes direction, is discussed. We also give a brief introduction of the quantum chemistry ab initio method, which has shown to be powerful in understanding the magnetic anisotropy and low-lying states. In the constructing and characterizing part, we give an overview of the SIMs based on lanthanide and transition ions, reported by our group in the past 5 years. In the 4f-SIMs survey, we discuss how ß-diketonates and cyclomultienes, and their combination, as ligands to influence magnetic anisotropy and provide some suggestion on designing SIMs based on different lanthanide ions. In the 3d-SIMs survey, we fully discuss the correlation between zero-field-splitting parameter D and molecular geometrical angle parameters. Finally, we lay out the challenges and further development of SIMs. We hope the understanding we provide about single-ion magnetic properties will be helpful to design high-performance SMMs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA