Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37375278

RESUMO

To investigate the synergistic catalytic effects of boric acid and α-hydroxycarboxylic acids (HCAs), we analyzed and measured the effects of the complexation reactions between boric acid and HCAs on the ionization equilibrium of the HCAs. Eight HCAs, glycolic acid, D-(-)-lactic acid, (R)-(-)-mandelic acid, D-gluconic acid, L-(-)-malic acid, L-(+)-tartaric acid, D-(-)-tartaric acid, and citric acid, were selected to measure the pH changes in aqueous HCA solutions after adding boric acid. The results showed that the pH values of the aqueous HCA solutions gradually decreased with an increase in the boric acid molar ratio, and the acidity coefficients when boric acid formed double-ligand complexes with HCAs were smaller than those of the single-ligand complexes. The more hydroxyl groups the HCA contained, the more types of complexes could be formed, and the greater the rate of change in the pH. The total rates of change in the pH of the HCA solutions were in the following order: citric acid > L-(-)-tartaric acid = D-(-)-tartaric acid > D-gluconic acid > (R)-(-)-mandelic acid > L-(-)-malic acid > D-(-)-lactic acid > glycolic acid. The composite catalyst of boric acid and tartaric acid had a high catalytic activity-the yield of methyl palmitate was 98%. After the reaction, the catalyst and methanol could be separated by standing stratification.

2.
Molecules ; 28(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38005232

RESUMO

Camphene, C12-C18 fatty acids, and titanium sulfate were used as raw materials to study the synthesis of long-chain fatty acid isobornyl esters. Products were analyzed quantitatively by gas chromatography (GC), characterized by nuclear magnetic resonance spectroscopy (hydrogen and carbon), and evaluated using toxicity tests. The optimum reaction conditions were as follows: n(lauric acid):n(camphene) = 2.5:1, m(titanium sulfate):m(camphene) = 0.25:1, reaction temperature of 80 °C, and reaction time of 25 h. Under these conditions, the content of isobornyl laurate in the product was 74.49%, and the content of purified product was 95.02%. The reaction kinetics for isobornyl laurate showed an apparent first-order reaction in the first 9 h with an activation energy of 31.01 kJ/mol. The reaction conditions of myristic acid, palmitic acid, and stearic acid were similar to those of lauric acid, but the reaction time had to be increased as the molecular weight of the fatty acid increased. Toxicity tests for four types of long-chain fatty acid isobornyl esters showed that the samples had low toxicity.

3.
Molecules ; 29(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38202626

RESUMO

The complexation of boric acid (BA) with various α-hydroxycarboxylic acids (HCAs) was examined by analyzing the change in the optical rotation after the addition of BA to aqueous HCA solutions, and the catalytic properties of the complexes were examined by catalyzing the esterification of the HCAs. The absolute values of the optical rotation of the HCAs increased with increasing BA-to-HCA molar ratio, and the rate of change of the optical rotation gradually decreased as the BA-to-HCA molar ratio increased, reaching a minimum value at a molar ratio of approximately three. As a catalyst, BA could catalyze the acetylation of hydroxyl groups in addition to the esterification of HCAs. Compared to the conventional synthesis routes of ATBC and ATOC, a synthesis route with BA as the catalyst allowed for a lower frequency of catalyst separation and replacement while providing light-colored products. BA could catalyze the formation of triethyl citrate, and the yield of triethyl citrate reached 93.8%. BA could also catalyze the reaction between malic acid and pinene to produce borneol malate. After saponification of borneol malate, borneol was obtained with a yield of 39%.

4.
Molecules ; 28(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37049965

RESUMO

In this study, seven types of α-hydroxycarboxylic acids were selected to form composite catalysts with boric acid, and their catalytic properties were studied using the catalytic hydration of α-pinene. The results showed that the composite catalyst of boric acid and tartaric acid had the highest catalytic activity. With an α-pinene, water, acetic acid, tartaric acid, and boric acid mass ratio of 10:10:25:0.5:0.4, the reaction temperature was 60 °C, the reaction time was 24 h, the conversion of α-pinene was 96.1%, and the selectivity of terpineol was 58.7%. The composite catalyst composed of boric acid and mandelic acid directly catalyzed the hydration of α-pinene in the absence of a solvent. Under the optimal conditions, the conversion of α-pinene reached 96.1%, and the selectivity of terpineol was 55.5%. When the composite catalyst catalyzed α-pinene to synthesize terpineol in one step, the terpineol was optically active, and terpineol synthesized using the two-step method with the dehydration of p-menthane-1,8-diol monohydrate was racemic. These composite catalysts may offer good application prospects in the synthesis of terpineol.

5.
Molecules ; 28(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36838861

RESUMO

This study examined the preparation of isobornyl acetate/isoborneol from camphene using an α-hydroxyl carboxylic acid (HCA) composite catalyst. Through the study of the influencing factors, it was found that HCA and boric acid exhibited significant synergistic catalysis. Under optimal conditions, when tartaric acid-boric acid was used as the catalyst, the conversion of camphene and the gas chromatography (GC) content and selectivity of isobornyl acetate were 92.9%, 88.5%, and 95.3%, respectively. With the increase in the ratio of water to acetic acid, the GC content and selectivity of isobornol in the product increased, but the conversion of camphene decreased. The yield of isobornol was increased by adding ethyl acetate or titanium sulfate/zirconium sulfate to form a ternary composite catalyst. When a ternary complex of titanium sulfate, tartaric acid, and boric acid was used as the catalyst, the GC content of isobornol in the product reached 55.6%. Under solvent-free conditions, mandelic acid-boric acid could catalyze the hydration reaction of camphene, the GC content of isoborneol in the product reached 26.1%, and the selectivity of isoborneol was 55.9%. The HCA-boric acid composite catalyst can use aqueous acetic acid as a raw material, which is also beneficial for the reuse of the catalyst.


Assuntos
Ácidos Carboxílicos , Titânio , Ácidos Carboxílicos/química , Monoterpenos Bicíclicos , Água/química , Ácido Acético , Catálise , Sulfatos
6.
Molecules ; 27(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35164391

RESUMO

We report the use of five alpha-hydroxy acids (citric, tartaric, mandelic, lactic and glycolic acids) as catalysts in the synthesis of terpineol from alpha-pinene. The study found that the hydration rate of pinene was slow when only catalyzed by alpha-hydroxyl acids. Ternary composite catalysts, composed of AHAs, phosphoric acid, and acetic acid, had a good catalytic performance. The reaction step was hydrolysis of the intermediate terpinyl acetate, which yielded terpineol. The optimal reaction conditions were as follows: alpha-pinene, acetic acid, water, citric acid, and phosphoric acid, at a mass ratio of 1:2.5:1:(0.1-0.05):0.05, a reaction temperature of 70 °C, and a reaction time of 12-15 h. The conversion of alpha-pinene was 96%, the content of alpha-terpineol was 46.9%, and the selectivity of alpha-terpineol was 48.1%. In addition, the catalytic performance of monolayer graphene oxide and its composite catalyst with citric acid was studied, with acetic acid used as an additive.

7.
PLoS One ; 19(4): e0299218, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38662654

RESUMO

To enhance the yield of the one-step synthesis of terpinyl acetate from α-pinene and acetic acid, this study evaluated α-hydroxycarboxylic acid (HCA)-boric acid composite catalysts based on orthogonal experimental design. The most important factor affecting the terpinyl acetate content in the product was the HCA content. The catalytic performance of the composite catalyst was related to the pKa1 of HCA. The tartaric acid-boric acid composite catalyst showed the highest catalytic activity. The α-pinene conversion reached 91.8%, and the terpinyl acetate selectivity reached 45.6%. When boric acid was replaced with B2O3, the HCA composite catalyst activity was enhanced, which reduced the use of HCA. When the lactic acid and B2O3 content accounted for 10% and 4% of the α-pinene mass content, respectively, the α-pinene conversion reached 93.2%, and the terpinyl acetate selectivity reached up to 47.1%. In addition, the presence of water was unfavorable to HCA-boric acid composite catalyst. However, a water content less than 1% of the α-pinene mass content improved the catalytic activity of HCA-B2O3. When the tartaric acid-B2O3 was used as catalyst, and the water content was 1% of the α-pinene mass content, the α-pinene conversion was 89.6%, and the terpinyl acetate selectivity was 47.5%.


Assuntos
Monoterpenos Bicíclicos , Ácidos Bóricos , Monoterpenos , Catálise , Monoterpenos Bicíclicos/química , Ácidos Bóricos/química , Monoterpenos/química , Tartaratos/química , Acetatos/química , Ácidos Carboxílicos/química , Terpenos/química , Terpenos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA