Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 3870, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890142

RESUMO

The attention of the scientific community, policymakers, and public opinion on the Medicanes has recently grown because of their increase in intensity and harmful potential. Although Medicanes may be influenced by pre-existing upper-ocean conditions, uncertainties remain about how such weather extremes influence ocean circulation. This work examines a condition that has been never described before in the Mediterranean, which involves the interplay between an atmospheric cyclone (Medicane Apollo-October 2021) and a cyclonic gyre located in the western Ionian Sea. During the event, the temperature in the core of the cold gyre dropped dramatically, due to a local maximum in the wind-stress curl, Ekman pumping, and relative vorticity. Cooling and vertical mixing of the surface layer combined with upwelling in the subsurface layer caused a shoaling of the Mixed Layer Depth, halocline, and nutricline. The resulting biogeochemical impacts included an increase in oxygen solubility, chlorophyll concentration, productivity at the surface, and decreases in the subsurface layer. The presence of a cold gyre along Apollo's trajectory leads to a different ocean response from that observed with previous Medicanes, endorsing the efficiency of a multi-platform observation system integrated into an operational model for future mitigation of weather-related damages.

2.
Sci Rep ; 10(1): 1905, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024877

RESUMO

Under the emerging features of interannual-to-decadal ocean variability, the periodical reversals of the North Ionian Gyre (NIG), driven mostly by the mechanism named Adriatic-Ionian Bimodal Oscillating System (BiOS), are known as impacting on marine physics and biogeochemistry and potentially influencing short-term regional climate predictability in the Eastern Mediterranean. Whilst it has been suggested that local wind forcing cannot explain such variability, aspects of the alternative hypothesis indicating that NIG reversals mainly arises from an internal ocean feedback mechanism alone remain largely debated. Here we demonstrate, using the results of physical experiments, performed in the world's largest rotating tank and numerical simulations, that the main observed feature of BiOS, i.e., the switch of polarity of the near-surface circulation in the NIG, can be induced by a mere injection of dense water on a sloping bottom. Hence, BiOS is a truly oceanic mode of variability and abrupt polarity changes in circulation can arise solely from extreme dense water formation events.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA