Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 578(7793): 49-52, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32025011

RESUMO

Solar heating of a cometary surface provides the energy necessary to sustain gaseous activity, through which dust is removed1,2. In this dynamical environment, both the coma3,4 and the nucleus5,6 evolve during the orbit, changing their physical and compositional properties. The environment around an active nucleus is populated by dust grains with complex and variegated shapes7, lifted and diffused by gases freed from the sublimation of surface ices8,9. The visible colour of dust particles is highly variable: carbonaceous organic material-rich grains10 appear red while magnesium silicate-rich11,12 and water-ice-rich13,14 grains appear blue, with some dependence on grain size distribution, viewing geometry, activity level and comet family type. We know that local colour changes are associated with grain size variations, such as in the bluer jets made of submicrometre grains on comet Hale-Bopp15 or in the fragmented grains in the coma16 of C/1999 S4 (LINEAR). Apart from grain size, composition also influences the coma's colour response, because transparent volatiles can introduce a substantial blueing in scattered light, as observed in the dust particles ejected after the collision of the Deep Impact probe with comet 9P/Tempel 117. Here we report observations of two opposite seasonal colour cycles in the coma and on the surface of comet 67P/Churyumov-Gerasimenko through its perihelion passage18. Spectral analysis indicates an enrichment of submicrometre grains made of organic material and amorphous carbon in the coma, causing reddening during the passage. At the same time, the progressive removal of dust from the nucleus causes the exposure of more pristine and bluish icy layers on the surface. Far from the Sun, we find that the abundance of water ice on the nucleus is reduced owing to redeposition of dust and dehydration of the surface layer while the coma becomes less red.

2.
Am J Respir Crit Care Med ; 205(7): 761-768, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35023825

RESUMO

Rationale: Mucin homeostasis is fundamental to airway health. Upregulation of airway mucus glycoprotein MUC5B is observed in diverse common lung diseases and represents a potential therapeutic target. In mice, Muc5b is required for mucociliary clearance and for controlling inflammation after microbial exposure. The consequences of its loss in humans are unclear. Objectives: The goal of this study was to identify and characterize a family with congenital absence of MUC5B protein. Methods: We performed whole-genome sequencing in an adult proband with unexplained bronchiectasis, impaired pulmonary function, and repeated Staphylococcus aureus infection. Deep phenotyping over a 12-year period included assessments of pulmonary radioaerosol mucociliary clearance. Genotyping with reverse phenotyping was organized for eight family members. Extensive experiments, including immunofluorescence staining and mass spectrometry for mucins, were performed across accessible sample types. Measurements and Main Results: The proband, and her symptomatic sibling who also had extensive sinus disease with nasal polyps, were homozygous for a novel splicing variant in the MUC5B gene (NM_002458.2: c.1938 + 1G>A). MUC5B was absent from saliva, sputum, and nasal samples. Mucociliary clearance was impaired in the proband, and large numbers of apoptotic macrophages were present in sputum. Three siblings heterozygous for the familial MUC5B variant were asymptomatic but had a shared pattern of mild lung function impairments. Conclusions: Congenital absence of MUC5B defines a new category of genetic respiratory disease. The human phenotype is highly concordant with that of the Muc5b-/- murine model. Further study of individuals with decreased MUC5B production could provide unique mechanistic insights into airway mucus biology.


Assuntos
Pneumopatias , Mucinas , Adulto , Animais , Feminino , Humanos , Pulmão/metabolismo , Pneumopatias/metabolismo , Camundongos , Mucina-5AC/genética , Mucina-5B/genética , Mucinas/metabolismo , Depuração Mucociliar/genética , Muco/metabolismo
3.
Proc Natl Acad Sci U S A ; 110(47): E4446-55, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24133141

RESUMO

Assembly of appropriately oriented actin cables nucleated by formin proteins is necessary for many biological processes in diverse eukaryotes. However, compared with knowledge of how nucleation of dendritic actin filament arrays by the actin-related protein-2/3 complex is regulated, the in vivo regulatory mechanisms for actin cable formation are less clear. To gain insights into mechanisms for regulating actin cable assembly, we reconstituted the assembly process in vitro by introducing microspheres functionalized with the C terminus of the budding yeast formin Bni1 into extracts prepared from yeast cells at different cell-cycle stages. EM studies showed that unbranched actin filament bundles were reconstituted successfully in the yeast extracts. Only extracts enriched in the mitotic cyclin Clb2 were competent for actin cable assembly, and cyclin-dependent kinase 1 activity was indispensible. Cyclin-dependent kinase 1 activity also was found to regulate cable assembly in vivo. Here we present evidence that formin cell-cycle regulation is conserved in vertebrates. The use of the cable-reconstitution system to test roles for the key actin-binding proteins tropomyosin, capping protein, and cofilin provided important insights into assembly regulation. Furthermore, using mass spectrometry, we identified components of the actin cables formed in yeast extracts, providing the basis for comprehensive understanding of cable assembly and regulation.


Assuntos
Citoesqueleto de Actina/metabolismo , Ciclo Celular/fisiologia , Proteínas dos Microfilamentos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Citoesqueleto de Actina/ultraestrutura , Western Blotting , Proteína Quinase CDC2/metabolismo , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Microesferas , Polimerização , Saccharomyces cerevisiae
4.
Proc Natl Acad Sci U S A ; 110(43): 17344-9, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24106307

RESUMO

Four-dimensional fluorescence microscopy--which records 3D image information as a function of time--provides an unbiased way of tracking dynamic behavior of subcellular components in living samples and capturing key events in complex macromolecular processes. Unfortunately, the combination of phototoxicity and photobleaching can severely limit the density or duration of sampling, thereby limiting the biological information that can be obtained. Although widefield microscopy provides a very light-efficient way of imaging, obtaining high-quality reconstructions requires deconvolution to remove optical aberrations. Unfortunately, most deconvolution methods perform very poorly at low signal-to-noise ratios, thereby requiring moderate photon doses to obtain acceptable resolution. We present a unique deconvolution method that combines an entropy-based regularization function with kernels that can exploit general spatial characteristics of the fluorescence image to push the required dose to extreme low levels, resulting in an enabling technology for high-resolution in vivo biological imaging.


Assuntos
Entropia , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Razão Sinal-Ruído , Algoritmos , Animais , Linhagem Celular , Modelos Moleculares , Modelos Teóricos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Conformação Proteica , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Methods Mol Biol ; 2725: 131-146, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37856022

RESUMO

Volume electron microscopy (vEM) is a high-resolution imaging technique capable of revealing the 3D structure of cells, tissues, and model organisms. This imaging modality is gaining prominence due to its ability to provide a comprehensive view of cells at the nanometer scale. The visualization and quantitative analysis of individual subcellular structures however requires segmentation of each 2D electron micrograph slice of the 3D vEM dataset; this process is extremely laborious de facto limiting its applications and throughput. To address these limitations, deep learning approaches have been recently developed including Empanada-Napari plugin, an open-source tool for automated segmentation based on a Panoptic-DeepLab (PDL) architecture. In this chapter, we provide a step-by-step protocol describing the process of manual segmentation using 3dMOD within the IMOD package and the process of automated segmentation using Empanada-Napari plugins for the 3D reconstruction of airway cellular structures.


Assuntos
Imageamento Tridimensional , Microscopia Eletrônica de Volume , Imageamento Tridimensional/métodos , Aprendizado de Máquina , Tórax , Processamento de Imagem Assistida por Computador/métodos
7.
Nat Commun ; 15(1): 2687, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538594

RESUMO

Centrosomes and cilia are microtubule-based superstructures vital for cell division, signaling, and motility. The once thought hollow lumen of their microtubule core structures was recently found to hold a rich meshwork of microtubule inner proteins (MIPs). To address the outstanding question of how distinct MIPs evolved to recognize microtubule inner surfaces, we applied computational sequence analyses, structure predictions, and experimental validation to uncover evolutionarily conserved microtubule- and MIP-binding modules named NWE, SNYG, and ELLEn, and PYG and GFG-repeat by their signature motifs. These modules intermix with MT-binding DM10-modules and Mn-repeats in 24 Chlamydomonas and 33 human proteins. The modules molecular characteristics provided keys to identify elusive cross-species homologs, hitherto unknown human MIP candidates, and functional properties for seven protein subfamilies, including the microtubule seam-binding NWE and ELLEn families. Our work defines structural innovations that underpin centriole and axoneme assembly and demonstrates that MIPs co-evolved with centrosomes and cilia.


Assuntos
Cílios , Proteínas dos Microtúbulos , Humanos , Cílios/metabolismo , Proteínas dos Microtúbulos/metabolismo , Axonema/metabolismo , Microtúbulos/metabolismo , Centríolos/metabolismo
8.
Methods Mol Biol ; 2725: 121-129, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37856021

RESUMO

Volume electron microscopy technologies such as serial block face scanning electron microscopy (SBF-SEM) allow the characterization of tissue organization and cellular content in three dimensions at nanoscale resolution. Here, we describe the procedure to process and image an air-liquid interface culture of human or mouse airway epithelial cells for visualization of the multiciliated epithelium by SBF-SEM in vertical or horizontal cross section.


Assuntos
Imageamento Tridimensional , Microscopia Eletrônica de Volume , Animais , Humanos , Camundongos , Imageamento Tridimensional/métodos , Microscopia Eletrônica de Varredura , Epitélio , Células Epiteliais
9.
Cell Rep ; 43(2): 113713, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38306274

RESUMO

R2TP is a chaperone complex consisting of the AAA+ ATPases RUVBL1 and RUVBL2, as well as RPAP3 and PIH1D1 proteins. R2TP is responsible for the assembly of macromolecular complexes mainly acting through different adaptors. Using proximity-labeling mass spectrometry, we identified deleted in primary ciliary dyskinesia (DPCD) as an adaptor of R2TP. Here, we demonstrate that R2TP-DPCD influences ciliogenesis initiation through a unique mechanism by interaction with Akt kinase to regulate its phosphorylation levels rather than its stability. We further show that DPCD is a heart-shaped monomeric protein with two domains. A highly conserved region in the cysteine- and histidine-rich domains-containing proteins and SGT1 (CS) domain of DPCD interacts with the RUVBL2 DII domain with high affinity to form a stable R2TP-DPCD complex both in cellulo and in vitro. Considering that DPCD is one among several CS-domain-containing proteins found to associate with RUVBL1/2, we propose that RUVBL1/2 are CS-domain-binding proteins that regulate complex assembly and downstream signaling.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Fosforilação , ATPases Associadas a Diversas Atividades Celulares , Cognição
10.
Nat Cell Biol ; 7(3): 235-45, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15723056

RESUMO

Regulation of microtubule polymerization and depolymerization is required for proper cell development. Here, we report that two proteins of the Drosophila melanogaster kinesin-13 family, KLP10A and KLP59C, cooperate to drive microtubule depolymerization in interphase cells. Analyses of microtubule dynamics in S2 cells depleted of these proteins indicate that both proteins stimulate depolymerization, but alter distinct parameters of dynamic instability; KLP10A stimulates catastrophe (a switch from growth to shrinkage) whereas KLP59C suppresses rescue (a switch from shrinkage to growth). Moreover, immunofluorescence and live analyses of cells expressing tagged kinesins reveal that KLP10A and KLP59C target to polymerizing and depolymerizing microtubule plus ends, respectively. Our data also suggest that KLP10A is deposited on microtubules by the plus-end tracking protein, EB1. Our findings support a model in which these two members of the kinesin-13 family divide the labour of microtubule depolymerization.


Assuntos
Interfase , Cinesinas/fisiologia , Microtúbulos/ultraestrutura , Animais , Western Blotting , Linhagem Celular , Drosophila , Drosophila melanogaster , Glutationa Transferase/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Cinesinas/química , Cinesinas/metabolismo , Microscopia de Fluorescência , Modelos Biológicos , Polímeros/química , Estrutura Terciária de Proteína , Interferência de RNA , RNA de Cadeia Dupla/química , Fatores de Tempo
11.
Methods Mol Biol ; 2440: 305-326, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35218547

RESUMO

The structural organization of macromolecules and their association in assemblies and organelles is key to understand cellular function. Super-resolution fluorescence microscopy has expanded our toolbox for examining such nanometer-scale cellular structures, by enabling positional mapping of proteins in situ. Here, we detail the workflow to build nanometer-scale maps focusing on two complementary super-resolution modalities: structured illumination microscopy (SIM) and stochastic optical reconstruction microscopy (STORM).


Assuntos
Organelas , Substâncias Macromoleculares , Microscopia de Fluorescência
12.
J Cell Biol ; 175(1): 25-31, 2006 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-17015621

RESUMO

Kinesin is a superfamily of motor proteins that uses the energy of adenosine triphosphate hydrolysis to move and generate force along microtubules. A notable exception to this general description is found in the kinesin-13 family that actively depolymerizes microtubules rather than actively moving along them. This depolymerization activity is important in mitosis during chromosome segregation. It is still not fully clear by which mechanism kinesin-13s depolymerize microtubules. To address this issue, we used electron microscopy to investigate the interaction of kinesin-13s with microtubules. Surprisingly, we found that proteins of the kinesin-13 family form rings and spirals around microtubules. This is the first report of this type of oligomeric structure for any kinesin protein. These rings may allow kinesin-13s to stay at the ends of microtubules during depolymerization.


Assuntos
Cinesinas/ultraestrutura , Microtúbulos/ultraestrutura , Trifosfato de Adenosina/metabolismo , Animais , Cricetinae , Drosophila/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/fisiologia , Proteínas de Drosophila/ultraestrutura , Cinesinas/química , Cinesinas/fisiologia , Microtúbulos/química , Microtúbulos/metabolismo , Modelos Moleculares , Conformação Molecular , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/ultraestrutura
13.
BMC Med Genomics ; 14(1): 234, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556108

RESUMO

BACKGROUND: It is estimated that 1-13% of cases of bronchiectasis in adults globally are attributable to primary ciliary dyskinesia (PCD) but many adult patients with bronchiectasis have not been investigated for PCD. PCD is a disorder caused by mutations in genes required for motile cilium structure or function, resulting in impaired mucociliary clearance. Symptoms appear in infancy but diagnosis is often late or missed, often due to the lack of a "gold standard" diagnostic tool and non-specific symptoms. Mutations in > 50 genes account for around 70% of cases, with additional genes, and non-coding, synonymous, missense changes or structural variants (SVs) in known genes presumed to account for the missing heritability. METHODS: UK patients with no identified genetic confirmation for the cause of their PCD or bronchiectasis were eligible for whole genome sequencing (WGS) in the Genomics England Ltd 100,000 Genomes Project. 21 PCD probands and 52 non-cystic fibrosis (CF) bronchiectasis probands were recruited in Wessex Genome Medicine Centre (GMC). We carried out analysis of single nucleotide variants (SNVs) and SVs in all families recruited in Wessex GMC. RESULTS: 16/21 probands in the PCD cohort received confirmed (n = 9), probable (n = 4) or possible (n = 3) diagnosis from WGS, although 13/16 of these could have been picked up by current standard of care gene panel testing. In the other cases, SVs were identified which were missed by panel testing. We identified variants in novel PCD candidate genes (IFT140 and PLK4) in 2 probands in the PCD cohort. 3/52 probands in the non-CF bronchiectasis cohort received a confirmed (n = 2) or possible (n = 1) diagnosis of PCD. We identified variants in novel PCD candidate genes (CFAP53 and CEP164) in 2 further probands in the non-CF bronchiectasis cohort. CONCLUSIONS: Genetic testing is an important component of diagnosing PCD, especially in cases of atypical disease history. WGS is effective in cases where prior gene panel testing has found no variants or only heterozygous variants. In these cases it may detect SVs and is a powerful tool for novel gene discovery.


Assuntos
Transtornos da Motilidade Ciliar
14.
Nat Genet ; 53(2): 205-214, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33432184

RESUMO

Angiotensin-converting enzyme 2 (ACE2) is the main entry point in airway epithelial cells for SARS-CoV-2. ACE2 binding to the SARS-CoV-2 protein spike triggers viral fusion with the cell plasma membrane, resulting in viral RNA genome delivery into the host. Despite ACE2's critical role in SARS-CoV-2 infection, full understanding of ACE2 expression, including in response to viral infection, remains unclear. ACE2 was thought to encode five transcripts and one protein of 805 amino acids. In the present study, we identify a novel short isoform of ACE2 expressed in the airway epithelium, the main site of SARS-CoV-2 infection. Short ACE2 is substantially upregulated in response to interferon stimulation and rhinovirus infection, but not SARS-CoV-2 infection. This short isoform lacks SARS-CoV-2 spike high-affinity binding sites and, altogether, our data are consistent with a model where short ACE2 is unlikely to directly contribute to host susceptibility to SARS-CoV-2 infection.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Células Epiteliais/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Chlorocebus aethiops , Éxons , Células HEK293 , Humanos , Interferons/imunologia , Ligação Proteica , Isoformas de Proteínas/genética , Sítios de Splice de RNA , RNA-Seq , Sistema Respiratório/citologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Transcriptoma , Regulação para Cima , Células Vero
15.
Dev Cell ; 55(2): 209-223.e7, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33038334

RESUMO

In situ molecular architecture analysis of organelles and protein assemblies is essential to understanding the role of individual components and their cellular function, and to engineering new molecular functionalities. Through a super-resolution-driven approach, here we characterize the organization of the ciliary basal foot, an appendage of basal bodies whose main role is to provide a point of anchoring to the microtubule cytoskeleton. Quantitative image analysis shows that the basal foot is organized into three main regions linked by elongated coiled-coil proteins, revealing a conserved modular architecture in primary and motile cilia, but showing distinct features reflecting its specialized functions. Using domain-specific BioID proximity labeling and super-resolution imaging, we identify CEP112 as a basal foot protein and other candidate components of this assembly, aiding future investigations on the role of basal foot across different cilia systems.


Assuntos
Corpos Basais/metabolismo , Centríolos/metabolismo , Cílios/metabolismo , Microtúbulos/metabolismo , Animais , Transtornos da Motilidade Ciliar/metabolismo , Humanos , Microscopia Eletrônica/métodos , Proteínas/metabolismo
16.
Nat Commun ; 11(1): 1862, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32296038

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

17.
Sci Transl Med ; 12(535)2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188719

RESUMO

Airway clearance of pathogens and particulates relies on motile cilia. Impaired cilia motility can lead to reduction in lung function, lung transplant, or death in some cases. More than 50 proteins regulating cilia motility are linked to primary ciliary dyskinesia (PCD), a heterogeneous, mainly recessive genetic lung disease. Accurate PCD molecular diagnosis is essential for identifying therapeutic targets and for initiating therapies that can stabilize lung function, thereby reducing socioeconomic impact of the disease. To date, PCD diagnosis has mainly relied on nonquantitative methods that have limited sensitivity or require a priori knowledge of the genes involved. Here, we developed a quantitative super-resolution microscopy workflow: (i) to increase sensitivity and throughput, (ii) to detect structural defects in PCD patients' cells, and (iii) to quantify motility defects caused by yet to be found PCD genes. Toward these goals, we built a localization map of PCD proteins by three-dimensional structured illumination microscopy and implemented quantitative image analysis and machine learning to detect protein mislocalization, we analyzed axonemal structure by stochastic optical reconstruction microscopy, and we developed a high-throughput method for detecting motile cilia uncoordination by rotational polarity. Together, our data show that super-resolution methods are powerful tools for improving diagnosis of motile ciliopathies.


Assuntos
Transtornos da Motilidade Ciliar , Ciliopatias , Síndrome de Kartagener , Cílios , Transtornos da Motilidade Ciliar/diagnóstico , Humanos , Mutação , Proteínas/genética
18.
Dev Cell ; 55(2): 224-236.e6, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33038333

RESUMO

Motile cilia are cellular beating machines that play a critical role in mucociliary clearance, cerebrospinal fluid movement, and fertility. In the airways, hundreds of motile cilia present on the surface of a multiciliated epithelia cell beat coordinately to protect the epithelium from bacteria, viruses, and harmful particulates. During multiciliated cell differentiation, motile cilia are templated from basal bodies, each extending a basal foot-an appendage linking motile cilia together to ensure coordinated beating. Here, we demonstrate that among the many motile cilia of a multiciliated cell, a hybrid cilium with structural features of both primary and motile cilia is harbored. The hybrid cilium is conserved in mammalian multiciliated cells, originates from parental centrioles, and its cellular position is biased and dependent on ciliary beating. Furthermore, we show that the hybrid cilium emerges independently of other motile cilia and functions in regulating basal body alignment.


Assuntos
Corpos Basais/patologia , Diferenciação Celular/fisiologia , Centríolos/patologia , Cílios/patologia , Células Cultivadas , Centríolos/fisiologia , Cílios/fisiologia , Células Epiteliais/patologia , Epitélio/patologia , Humanos , Microscopia/métodos
19.
Science ; 367(6483)2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32165559

RESUMO

The measured nitrogen-to-carbon ratio in comets is lower than for the Sun, a discrepancy which could be alleviated if there is an unknown reservoir of nitrogen in comets. The nucleus of comet 67P/Churyumov-Gerasimenko exhibits an unidentified broad spectral reflectance feature around 3.2 micrometers, which is ubiquitous across its surface. On the basis of laboratory experiments, we attribute this absorption band to ammonium salts mixed with dust on the surface. The depth of the band indicates that semivolatile ammonium salts are a substantial reservoir of nitrogen in the comet, potentially dominating over refractory organic matter and more volatile species. Similar absorption features appear in the spectra of some asteroids, implying a compositional link between asteroids, comets, and the parent interstellar cloud.

20.
Elife ; 72018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30168418

RESUMO

Centrosome structure, function, and number are finely regulated at the cellular level to ensure normal mammalian development. Here, we characterize PPP1R35 as a novel bona fide centrosomal protein and demonstrate that it is critical for centriole elongation. Using quantitative super-resolution microscopy mapping and live-cell imaging we show that PPP1R35 is a resident centrosomal protein located in the proximal lumen above the cartwheel, a region of the centriole that has eluded detailed characterization. Loss of PPP1R35 function results in decreased centrosome number and shortened centrioles that lack centriolar distal and microtubule wall associated proteins required for centriole elongation. We further demonstrate that PPP1R35 acts downstream of, and forms a complex with, RTTN, a microcephaly protein required for distal centriole elongation. Altogether, our study identifies a novel step in the centriole elongation pathway centered on PPP1R35 and elucidates downstream partners of the microcephaly protein RTTN.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Centrossomo/metabolismo , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Microscopia Confocal , Ligação Proteica , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA