Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Haematologica ; 103(12): 2049-2058, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30076183

RESUMO

Aberrant changes in microRNA expression contribute to lymphomagenesis. Bromodomain and extra-terminal domain inhibitors such as OTX015 (MK-8628, birabresib) have demonstrated preclinical and clinical activity in hematologic tumors. MicroRNA profiling of diffuse large B-cell lymphoma cells treated with OTX015 revealed changes in the expression levels of a limited number of microRNAs, including miR-92a-1-5p, miR-21-3p, miR-155-5p and miR-96-5p. Analysis of publicly available chromatin immunoprecipitation sequencing data of diffuse large B-cell lymphoma cells treated with bromodomain and extra-terminal domain (BET) inhibitors showed that the BET family member BRD4 bound to the upstream regulatory regions of multiple microRNA genes and that this binding decreased following BET inhibition. Alignment of our microRNA profiling data with the BRD4 chromatin immunoprecipitation sequencing data revealed that microRNAs downregulated by OTX015 also exhibited reduced BRD4 binding in their promoter regions following treatment with another bromodomain and extra-terminal domain inhibitor, JQ1, indicating that BRD4 contributes directly to microRNA expression in lymphoma. Treatment with bromodomain and extra-terminal domain inhibitors also decreased the expression of the arginine methyltransferase PRMT5, which plays a crucial role in B-cell transformation and negatively modulates the transcription of miR-96-5p. The data presented here indicate that in addition to previously observed effects on the expression of coding genes, bromodomain and extra-terminal domain inhibitors also modulate the expression of microRNAs involved in lymphomagenesis.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Linfoma Difuso de Grandes Células B/genética , MicroRNAs/genética , Proteínas Nucleares/genética , Domínios Proteicos , Fatores de Transcrição/genética , Acetanilidas/farmacologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Linfoma Difuso de Grandes Células B/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Ligação Proteica/efeitos dos fármacos , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
2.
Br J Haematol ; 178(6): 936-948, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28653353

RESUMO

The epigenome is often deregulated in cancer and treatment with inhibitors of bromodomain and extra-terminal proteins, the readers of epigenetic acetylation marks, represents a novel therapeutic approach. Here, we have characterized the anti-tumour activity of the novel bromodomain and extra-terminal (BET) inhibitor BAY 1238097 in preclinical lymphoma models. BAY 1238097 showed anti-proliferative activity in a large panel of lymphoma-derived cell lines, with a median 50% inhibitory concentration between 70 and 208 nmol/l. The compound showed strong anti-tumour efficacy in vivo as a single agent in two diffuse large B cell lymphoma models. Gene expression profiling showed BAY 1238097 targeted the NFKB/TLR/JAK/STAT signalling pathways, MYC and E2F1-regulated genes, cell cycle regulation and chromatin structure. The gene expression profiling signatures also highly overlapped with the signatures obtained with other BET Bromodomain inhibitors and partially overlapped with HDAC-inhibitors, mTOR inhibitors and demethylating agents. Notably, BAY 1238097 presented in vitro synergism with EZH2, mTOR and BTK inhibitors. In conclusion, the BET inhibitor BAY 1238097 presented promising anti-lymphoma preclinical activity in vitro and in vivo, mediated by the interference with biological processes driving the lymphoma cells. Our data also indicate the use of combination schemes targeting EZH2, mTOR and BTK alongside BET bromodomains.


Assuntos
Antineoplásicos/uso terapêutico , Benzodiazepinas/uso terapêutico , Linfoma não Hodgkin/tratamento farmacológico , Adenina/análogos & derivados , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Benzodiazepinas/administração & dosagem , Benzodiazepinas/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Sinergismo Farmacológico , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/biossíntese , Everolimo/farmacologia , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Linfoma não Hodgkin/genética , Linfoma não Hodgkin/patologia , Camundongos SCID , Piperidinas , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinas/farmacologia , Células Tumorais Cultivadas/efeitos dos fármacos , Células Tumorais Cultivadas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Blood ; 125(12): 1922-31, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25612624

RESUMO

Splenic marginal zone lymphoma is a rare lymphoma. Loss of 7q31 and somatic mutations affecting the NOTCH2 and KLF2 genes are the commonest genomic aberrations. Epigenetic changes can be pharmacologically reverted; therefore, identification of groups of patients with specific epigenomic alterations might have therapeutic relevance. Here we integrated genome-wide DNA-promoter methylation profiling with gene expression profiling, and clinical and biological variables. An unsupervised clustering analysis of a test series of 98 samples identified 2 clusters with different degrees of promoter methylation. The cluster comprising samples with higher-promoter methylation (High-M) had a poorer overall survival compared with the lower (Low-M) cluster. The prognostic relevance of the High-M phenotype was confirmed in an independent validation set of 36 patients. In the whole series, the High-M phenotype was associated with IGHV1-02 usage, mutations of NOTCH2 gene, 7q31-32 loss, and histologic transformation. In the High-M set, a number of tumor-suppressor genes were methylated and repressed. PRC2 subunit genes and several prosurvival lymphoma genes were unmethylated and overexpressed. A model based on the methylation of 3 genes (CACNB2, HTRA1, KLF4) identified a poorer-outcome patient subset. Exposure of splenic marginal zone lymphoma cell lines to a demethylating agent caused partial reversion of the High-M phenotype and inhibition of proliferation.


Assuntos
Metilação de DNA , Linfoma de Zona Marginal Tipo Células B/genética , Neoplasias Esplênicas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Proliferação de Células , Transformação Celular Neoplásica , Análise por Conglomerados , Análise Mutacional de DNA , Feminino , Perfilação da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Fator 4 Semelhante a Kruppel , Linfoma de Zona Marginal Tipo Células B/diagnóstico , Linfoma de Zona Marginal Tipo Células B/mortalidade , Masculino , Pessoa de Meia-Idade , Mutação , Fenótipo , Prognóstico , Regiões Promotoras Genéticas , Neoplasias Esplênicas/diagnóstico , Neoplasias Esplênicas/mortalidade , Resultado do Tratamento
4.
Blood ; 122(13): 2233-41, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-23926301

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is the most common form of human lymphoma. DLBCL is a heterogeneous disease characterized by different genetic lesions. We herein report the functional characterization of a recurrent gain mapping on chromosome 11q24.3, found in 23% of 166 DLBCL cases analyzed. The transcription factors ETS1 and FLI1, located within the 11q24.3 region, had significantly higher expression in clinical samples carrying the gain. Functional studies on cell lines showed that ETS1 and FLI1 cooperate in sustaining DLBCL proliferation and viability and regulate genes involved in germinal center differentiation. Taken together, these data identify the 11q24.3 gain as a recurrent lesion in DLBCL leading to ETS1 and FLI1 deregulated expression, which can contribute to the pathogenesis of this disease.


Assuntos
Cromossomos Humanos Par 11/genética , Linfoma Difuso de Grandes Células B/genética , Proteína Proto-Oncogênica c-ets-1/genética , Proteína Proto-Oncogênica c-fli-1/genética , Western Blotting , Imunoprecipitação da Cromatina , Eletroporação , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Análise de Sequência com Séries de Oligonucleotídeos , Proteína Proto-Oncogênica c-ets-1/biossíntese , Proteína Proto-Oncogênica c-fli-1/biossíntese , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma , Transfecção
6.
Mol Cancer Ther ; 23(3): 368-380, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38052765

RESUMO

BTK and PI3K inhibitors are among the drugs approved for the treatment of patients with lymphoid neoplasms. Although active, their ability to lead to long-lasting complete remission is rather limited, especially in the lymphoma setting. This indicates that tumor cells often develop resistance to the drugs. We started from a marginal zone lymphoma cell line, Karpas-1718, kept under prolonged exposure to the PI3Kδ inhibitor idelalisib until acquisition of resistance, or with no drug. Cells underwent transcriptome, miRNA and methylation profiling, whole-exome sequencing, and pharmacologic screening, which led to the identification of the overexpression of ERBB4 and its ligands HBEGF and NRG2 in the resistant cells. Cellular and genetic experiments demonstrated the involvement of this axis in blocking the antitumor activity of various BTK/PI3K inhibitors, currently used in the clinical setting. Addition of recombinant HBEGF induced resistance to BTK/PI3K inhibitors in parental cells and in additional lymphoma models. Combination with the ERBB inhibitor lapatinib was beneficial in resistant cells and in other lymphoma models already expressing the identified resistance factors. An epigenetic reprogramming sustained the expression of the resistance-related factors, and pretreatment with demethylating agents or EZH2 inhibitors overcame the resistance. Resistance factors were also shown to be expressed in clinical specimens. In conclusion, we showed that the overexpression of ERBB4 and its ligands represents a novel mechanism of resistance for lymphoma cells to bypass the antitumor activity of BTK and PI3K inhibitors and that targeted pharmacologic interventions can restore sensitivity to the small molecules.


Assuntos
Antineoplásicos , Linfoma de Células B , Humanos , Fosfatidilinositol 3-Quinases/farmacologia , Linhagem Celular Tumoral , Transdução de Sinais , Linfoma de Células B/patologia , Lapatinib/farmacologia , Lapatinib/uso terapêutico , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Receptor ErbB-4/farmacologia
7.
bioRxiv ; 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36711490

RESUMO

BTK and PI3K inhibitors are among the drugs approved for the treatment of patients with lymphoid neoplasms. Although active, their ability to lead as single agents to long-lasting complete remission is rather limited especially in the lymphoma setting. This indicates that tumor cells often develop resistance to the drugs. Here, we show that the overexpression of ERBB4 and its ligands represents a modality for B cell neoplastic cells to bypass the anti-tumor activity of BTK and PI3K inhibitors and that targeted pharmacological interventions can restore sensitivity to the small molecules. We started from a marginal zone lymphoma (MZL) cell line, Karpas-1718, kept under prolonged exposure to the PI3Kδ inhibitor idelalisib until acquisition of resistance, or with no drug. Cells underwent transcriptome, miRNA and methylation profiling, whole exome sequencing, and pharmacological screening which led to the identification of the overexpression of ERBB4 and its ligands HBEGF and NRG2 in the resistant cells. Cellular and genetic experiments demonstrated the involvement of this axis in blocking the anti-tumor activity of various BTK and PI3K inhibitors, currently used in the clinical setting. Addition of recombinant HBEGF induced resistance to BTK and PI3K inhibitors in parental cells but also in additional lymphoma models. Combination with the ERBB inhibitor lapatinib was beneficial in resistant cells and in other lymphoma models already expressing the identified resistance factors. Multi-omics analysis underlined that an epigenetic reprogramming affected the expression of the resistance-related factors, and pretreatment with demethylating agents or EZH2 inhibitors overcame the resistance. Resistance factors were shown to be expressed in clinical samples, further extending the findings of the study. In conclusions, we identified a novel ERBB4-driven mechanism of resistance to BTK and PI3K inhibitors and treatments that appear to overcome it. Key points: A mechanism of secondary resistance to the PI3Kδ and BTK inhibitors in B cell neoplasms driven by secreted factors.Resistance can be reverted by targeting ERBB signaling.

8.
Lab Anim (NY) ; 51(7): 191-202, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35726023

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoid neoplasm in dogs and in humans. It is characterized by a remarkable degree of clinical heterogeneity that is not completely elucidated by molecular data. This poses a major barrier to understanding the disease and its response to therapy, or when treating dogs with DLBCL within clinical trials. We performed an integrated analysis of exome (n = 77) and RNA sequencing (n = 43) data in a cohort of canine DLBCL to define the genetic landscape of this tumor. A wide range of signaling pathways and cellular processes were found in common with human DLBCL, but the frequencies of the most recurrently mutated genes (TRAF3, SETD2, POT1, TP53, MYC, FBXW7, DDX3X and TBL1XR1) differed. We developed a prognostic model integrating exonic variants and clinical and transcriptomic features to predict the outcome in dogs with DLBCL. These results comprehensively define the genetic drivers of canine DLBCL and can be prospectively utilized to identify new therapeutic opportunities.


Assuntos
Linfoma Difuso de Grandes Células B , Animais , Cães , Genômica , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/terapia , Linfoma Difuso de Grandes Células B/veterinária , Transdução de Sinais
9.
Br J Haematol ; 154(5): 590-9, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21749360

RESUMO

The integration of molecular and clinical information to tailor treatments remains an important research challenge in chronic lymphocytic leukaemia (CLL). This study aimed to identify genomic lesions associated with a poor outcome and a higher risk of histological transformation. A mono-institutional cohort of 147 cases was used as the test series, and a multi-institutional cohort of 176 cases as a validation series. Genomic profiles were obtained using Affymetrix SNP 6.0. The impact of the recurrent minimal common regions (MCRs) on overall survival was evaluated by univariate analysis followed by multiple-test correction. The independent prognostic significance was assessed by multivariate analysis. Eight MCRs showed a prognostic impact: gains at 2p25.3-p22.3 (MYCN), 2p22.3, 2p16.2-p14 (REL), 8q23.3-q24.3 (MYC), losses at 8p23.1-p21.2, 8p21.2, and of the TP53 locus. Gains at 2p and 8q and TP53 inactivation maintained prognostic significance in multivariate analysis and a hierarchical model confirmed their relevance. Gains at 2p also determined a higher risk of Richter syndrome transformation. The prediction of outcome for CLL patients might be improved by evaluating the presence of gains at 2p and 8q as novel genomic regions besides those included in the 'standard' fluorescence in situ hybridization panel.


Assuntos
Impressões Digitais de DNA , Estudo de Associação Genômica Ampla , Leucemia Linfocítica Crônica de Células B/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Hibridização Genômica Comparativa , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/mortalidade , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Mutação , Redes Neurais de Computação , Prognóstico , Taxa de Sobrevida , Adulto Jovem
11.
Front Oncol ; 8: 317, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30151355

RESUMO

Almost 30 years ago, Carlo Croce's group discovered the T-Cell Leukemia/Lymphoma 1A oncogene (TCL1A or TCL1). TCL1 protein is normally expressed in fetal tissues and early developmental stage lymphocytes. Its expression is deregulated in chronic lymphocytic leukemia (B-CLL) and most lymphomas. TCL1 plays a central role in lymphomagenesis as a co-activator of AKT kinases and other recently elucidated interacting protein partners. These include ATM, HSP70 and TP63, which were all confirmed as binding partners of TCL1 from co-immunoprecipitation experiments utilizing endogenously expressed proteins. The nature of these interactions highlighted the role of TCL1 in enhancing multiple signaling pathways, including PI3K and NF-κB. Based on its role in the aforementioned pathways and, despite the lack of a well-defined enzymatic activity, TCL1 is considered a potential therapeutic target for TCL1-positive hematological malignancies. This perspective will provide an overview of TCL1A and its interacting partners.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA