Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39212056

RESUMO

KEY POINTS: Treatment of cystic fibrosis-related chronic rhinosinusitis should target sinonasal biofilms. NaHCO3 salts with/without xylitol have limited antibiofilm properties, whereas rhDNAse has not. Phage effectivity varies and depends on the phage and the combination with antibiotics.

2.
Viruses ; 16(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39066209

RESUMO

Infections due to antimicrobial-resistant bacteria have become a major threat to global health. Some patients may carry resistant bacteria in their gut microbiota. Specific risk factors may trigger the conversion of these carriages into infections in hospitalized patients. Preventively eradicating these carriages has been postulated as a promising preventive intervention. However, previous attempts at such eradication using oral antibiotics or probiotics have led to discouraging results. Phage therapy, the therapeutic use of bacteriophage viruses, might represent a worthy alternative in this context. Taking inspiration from this clinical challenge, we built Gut-On-A-Chip (GOAC) models, which are tridimensional cell culture models mimicking a simplified gut section. These were used to better understand bacterial dynamics under phage pressure using two relevant species: Pseudomonas aeruginosa and Escherichia coli. Model mucus secretion was documented by ELISA assays. Bacterial dynamics assays were performed in GOAC triplicates monitored for 72 h under numerous conditions, such as pre-, per-, or post-bacterial timing of phage introduction, punctual versus continuous phage administration, and phage expression of mucus-binding properties. The potential genomic basis of bacterial phage resistance acquired in the model was investigated by variant sequencing. The bacterial "escape growth" rates under phage pressure were compared to static in vitro conditions. Our results suggest that there is specific bacterial prosperity in this model compared to other in vitro conditions. In E. coli assays, the introduction of a phage harboring unique mucus-binding properties could not shift this balance of power, contradicting previous findings in an in vivo mouse model and highlighting the key differences between these models. Genomic modifications were correlated with bacterial phage resistance acquisition in some but not all instances, suggesting that alternate ways are needed to evade phage predation, which warrants further investigation.


Assuntos
Bacteriófagos , Escherichia coli , Microbioma Gastrointestinal , Terapia por Fagos , Pseudomonas aeruginosa , Pseudomonas aeruginosa/virologia , Bacteriófagos/fisiologia , Bacteriófagos/genética , Humanos , Terapia por Fagos/métodos , Escherichia coli/virologia , Dispositivos Lab-On-A-Chip
3.
Front Med (Lausanne) ; 11: 1428432, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39071087

RESUMO

Fracture-related infections can be challenging, particularly with concomitant severe bone defects and multi-resistant microorganisms. We present a case of a 42-year-old patient with a fracture-related infection following a war injury from a gunshot, resulting in a 12-cm subtrochanteric segmental bone defect and the detection of four different multi-resistant Gram-negative bacteria. Due to antibiotic drug resistance, treatment with bacteriophages was considered. Phage susceptibility testing revealed the activity of a commercially available bacteriophage cocktail (Intesti bacteriophage, Eliava Institute, Tbilisi, Georgia). This phage cocktail was included in a modified two-stage Masquelet technique. During the first intervention, the bone was debrided and samples for microbiological and phage testing were harvested. The indwelling intramedullary rod was removed, and the bone defect was filled with a PMMA spacer loaded with colistin and the bone stabilized with a plate. During the second procedure, the PMMA spacer was removed and a silver-coated angular stable plate was implanted. The bone defect was filled with a fibular autograft and allograft cancellous bone chips. At the end of the procedure, the Intesti bacteriophage cocktail was injected into a DAC hydrogel and this bacteriophage hydrogel composite was then put onto the angular stable plate. Postoperatively the wound fluid was collected over 72 h, and high-throughput metagenomic sequencing was performed. This showed a time-dependent release of the bacteriophages in the wound fluid, with a relatively high concentration after 12 h, decreasing to DNA copies of 0 after 72 h. Furthermore, we have assessed the release of phages from DAC gel and the effect of DAC gel on the phages in vitro. The results showed a stable and rapid release of phages from the DAC gel (~1×103 PFU/mL). The clinical course of the patient showed no relapse of the infection with good bone consolidation of the bone defect after 1 year without the need for any surgical revision. To the best of our knowledge, this is the first case that shows the detection of bacteriophage DNA copies by high-throughput metagenomics sequencing in a patient with a complex fracture-related infection. Successful treatment of this case encourages further investigation of bacteriophage therapy in patients with complex bone and joint infections.

4.
Int J Antimicrob Agents ; 64(3): 107276, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39009289

RESUMO

OBJECTIVES: Staphylococcus aureus and Pseudomonas aeruginosa co-infections in patients with cystic fibrosis (CF) are associated with disease severity. Their treatment is complicated by biofilm formation in the sticky mucus obstructing the airways. We investigated the activity of phages-antibiotics combinations using a dual species biofilm (P. aeruginosa/S. aureus) formed in artificial sputum medium. METHODS: Biofilmswere incubated with broad-spectrum antibiotics (meropenem, ceftazidime, ciprofloxacin, tobramycin) combined with a cocktail of two (bacterio)phages (PSP3 and ISP) proven active via spot tests and double agar on P. aeruginosa PAO1 and S. aureus ATCC 25923. RESULTS: At the highest tested concentrations (100 x MIC), antibiotics alone caused a 20-50% reduction in biomass and reduced S. aureus and P. aeruginosa CFU of 2.3 to 2.8 and 2.1 to 3.6 log10, respectively. Phages alone reduced biofilm biomass by 23% and reduced P. aeruginosa CFU of 2.1 log10, but did not affect S. aureus viability. Phages enhanced antibiotic effects on biomass and exhibited additive effects with antibiotics against P. aeruginosa, but not against S. aureus. Following inhibition of bacterial respiration by phages in planktonic cultures rationalised these observations by demonstrating that PSP3 was effective at multiplicities of infection (MOI) as low as 10-4 plaque forming units (PFU)/CFU on P. aeruginosa, but ISP, at higher MOI (> 0.1) against S. aureus. CONCLUSION: Pre-screening inhibition of bacterial respiration by phages may assist in selecting those showing activity at sufficiently low titers to showcase anti-biofilm activity in this complex but clinically-relevant in vitro model of biofilm.


Assuntos
Antibacterianos , Biofilmes , Fibrose Cística , Pseudomonas aeruginosa , Staphylococcus aureus , Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/virologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/virologia , Staphylococcus aureus/fisiologia , Antibacterianos/farmacologia , Fibrose Cística/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/tratamento farmacológico , Terapia por Fagos/métodos , Bacteriófagos/fisiologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/tratamento farmacológico
5.
Microbiol Spectr ; 12(1): e0321923, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38084971

RESUMO

IMPORTANCE: Biofilm-related infections are among the most difficult-to-treat infections in all fields of medicine due to their antibiotic tolerance and persistent character. In the field of orthopedics, these biofilms often lead to therapeutic failure of medical implantable devices and urgently need novel treatment strategies. This forthcoming article aims to explore the dynamic interplay between newly isolated bacteriophages and routinely used antibiotics and clearly indicates synergetic patterns when used as a dual treatment modality. Biofilms were drastically more reduced when both active agents were combined, thereby providing additional evidence that phage-antibiotic combinations lead to synergism and could potentially improve clinical outcome for affected patients.


Assuntos
Bacteriófagos , Infecções por Pseudomonas , Humanos , Pseudomonas aeruginosa , Biofilmes , Infecções por Pseudomonas/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
6.
Nat Microbiol ; 9(6): 1434-1453, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38834776

RESUMO

In contrast to the many reports of successful real-world cases of personalized bacteriophage therapy (BT), randomized controlled trials of non-personalized bacteriophage products have not produced the expected results. Here we present the outcomes of a retrospective observational analysis of the first 100 consecutive cases of personalized BT of difficult-to-treat infections facilitated by a Belgian consortium in 35 hospitals, 29 cities and 12 countries during the period from 1 January 2008 to 30 April 2022. We assessed how often personalized BT produced a positive clinical outcome (general efficacy) and performed a regression analysis to identify functional relationships. The most common indications were lower respiratory tract, skin and soft tissue, and bone infections, and involved combinations of 26 bacteriophages and 6 defined bacteriophage cocktails, individually selected and sometimes pre-adapted to target the causative bacterial pathogens. Clinical improvement and eradication of the targeted bacteria were reported for 77.2% and 61.3% of infections, respectively. In our dataset of 100 cases, eradication was 70% less probable when no concomitant antibiotics were used (odds ratio = 0.3; 95% confidence interval = 0.127-0.749). In vivo selection of bacteriophage resistance and in vitro bacteriophage-antibiotic synergy were documented in 43.8% (7/16 patients) and 90% (9/10) of evaluated patients, respectively. We observed a combination of antibiotic re-sensitization and reduced virulence in bacteriophage-resistant bacterial isolates that emerged during BT. Bacteriophage immune neutralization was observed in 38.5% (5/13) of screened patients. Fifteen adverse events were reported, including seven non-serious adverse drug reactions suspected to be linked to BT. While our analysis is limited by the uncontrolled nature of these data, it indicates that BT can be effective in combination with antibiotics and can inform the design of future controlled clinical trials. BT100 study, ClinicalTrials.gov registration: NCT05498363 .


Assuntos
Antibacterianos , Infecções Bacterianas , Bacteriófagos , Terapia por Fagos , Humanos , Estudos Retrospectivos , Terapia por Fagos/métodos , Bacteriófagos/fisiologia , Bacteriófagos/genética , Feminino , Masculino , Pessoa de Meia-Idade , Antibacterianos/uso terapêutico , Adulto , Infecções Bacterianas/terapia , Resultado do Tratamento , Idoso , Medicina de Precisão/métodos , Adolescente , Adulto Jovem , Bactérias/virologia , Bactérias/genética , Criança , Idoso de 80 Anos ou mais , Pré-Escolar , Bélgica , Lactente
7.
Microbiol Spectr ; 11(6): e0290723, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37819122

RESUMO

IMPORTANCE: As antimicrobial resistance becomes more prevalent, the application of (bacterio)phage therapy as an alternative treatment for difficult-to-treat infections is (re)gaining popularity. Over the past decade, numerous promising case reports and series have been published demonstrating the therapeutic potential of phage therapy. However, important questions remain regarding the optimal treatment protocol and, unlike for medicinal products, there are currently no predefined quality standards for the stability of phage preparations. Phage titers can be influenced by several factors which could lead to reduced titers after preparation and storage and, ultimately, subtherapeutic applications. Determining the stability of different phages in different recipients according to the route of administration is therefore one of the first important steps in establishing a standardized protocol for phage therapy.


Assuntos
Infecções Bacterianas , Bacteriófagos , Terapia por Fagos , Rinossinusite , Sepse , Humanos , Terapia por Fagos/métodos , Infecções Bacterianas/terapia
8.
Viruses ; 15(5)2023 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-37243293

RESUMO

There is considerable interest in the use of bacteriophages (phages) to treat Pseudomonas aeruginosa infections associated with left ventricular assist devices (LVADs). These infections are often challenging to manage due to high rates of multidrug resistance and biofilm formation, which could potentially be overcome with the use of phages. We report a case of a 54-year-old man with relapsing multidrug-resistant P. aeruginosa LVAD driveline infection, who was treated with a combination of two lytic antipseudomonal phages administered intravenously and locally. Treatment was combined with LVAD driveline repositioning and systemic antibiotic administration, resulting in a successful outcome with clinical cure and eradication of the targeted bacteria. However, laboratory in vitro models showed that phages alone could not eradicate biofilms but could prevent biofilm formation. Phage-resistant bacterial strains evolved in biofilm models and showed decreased susceptibility to the phages used. Further studies are needed to understand the complexity of phage resistance and the interaction of phages and antibiotics. Our results indicate that the combination of phages, antibiotics, and surgical intervention can have great potential in treating LVAD-associated infections. More than 21 months post-treatment, our patient remains cured of the infection.


Assuntos
Bacteriófagos , Coração Auxiliar , Terapia por Fagos , Infecções por Pseudomonas , Masculino , Humanos , Pessoa de Meia-Idade , Pseudomonas aeruginosa , Terapia por Fagos/métodos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Pseudomonas/terapia , Infecções por Pseudomonas/microbiologia
9.
Front Med (Lausanne) ; 10: 1199657, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275366

RESUMO

Clinical case of a patient with a Pseudomonas aeruginosa multidrug-resistant prosthetic vascular graft infection which was treated with a cocktail of phages (PT07, 14/01, and PNM) in combination with ceftazidime-avibactam (CZA). After the application of the phage treatment and in absence of antimicrobial therapy, a new P. aeruginosa bloodstream infection (BSI) with a septic residual limb metastasis occurred, now involving a wild-type strain being susceptible to ß-lactams and quinolones. Clinical strains were analyzed by microbiology and whole genome sequencing techniques. In relation with phage administration, the clinical isolates of P. aeruginosa before phage therapy (HE2011471) and post phage therapy (HE2105886) showed a clonal relationship but with important genomic changes which could be involved in the resistance to this therapy. Finally, phenotypic studies showed a decrease in Minimum Inhibitory Concentration (MIC) to ß-lactams and quinolones as well as an increase of the biofilm production and phage resistant mutants in the clinical isolate of P. aeruginosa post phage therapy.

10.
Viruses ; 14(11)2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36366441

RESUMO

Bacteriophages could be a useful adjunct to antibiotics for the treatment of multidrug-resistant Pseudomonas aeruginosa infections. In this study, lytic P. aeruginosa myoviruses PsCh, PsIn, Ps25, and Ps12on-D were isolated from Tunisian sewage samples. Phage Ps12on-D displayed an adsorption time of ~10 min, a short latency period (~10 min), and a large burst size (~115 PFU per infected cell) under standard growth conditions. All phages were active at broad temperature (4 °C to 50 °C) and pH (3.0 to 11.0) ranges and were able to lyse a wide variety of P. aeruginosa strains isolated from clinical and environmental samples worldwide. Illumina sequencing revealed double-stranded DNA genomes ranging from 87,887 and 92,710 bp with high sequence identity to Pseudomonas phage PAK_P1. All four phages based on sequence analysis were assigned to the Pakpunavirus genus. The presented characterization and preclinical assessment are part of an effort to establish phage therapy treatment as an alternative strategy for the management of multidrug-resistant P. aeruginosa infections in Tunisia.


Assuntos
Bacteriófagos , Fagos de Pseudomonas , Pseudomonas aeruginosa/genética , Bacteriófagos/genética , Esgotos , Tunísia , Genoma Viral
11.
Front Cell Infect Microbiol ; 12: 1000721, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211951

RESUMO

As the global burden of disease caused by multidrug resistant bacteria is a major source of concern, credible clinical alternatives to antibiotic therapy, such as personalized phage therapy, are actively explored. Although phage therapy has been used for more than a century, the issue of an easy to implement diagnostic tool for determining phage susceptibility that meets current routine clinical needs is still open. In this Review, we summarize the existing methods used for determining phage activity on bacteria, including the three reference methods: the spot test, the double agar overlay plaque assay, and the Appelmans method. The first two methods rely on the principle of challenging the overnight growth of a lawn of bacteria in an agar matrix to a known relative phage to bacteria concentration and represent good screening tools to determine if the tested phage can be used for a "passive" and or "active" treatment. Beside these methods, several techniques, based on "real-time" growth kinetics assays (GKA) have been developed or are under development. They all monitor the growth of clinical isolates in the presence of phages, but use various detection methods, from classical optical density to more sophisticated techniques such as computer-assisted imagery, flow-cytometry, quantitative real-time polymerase chain reaction (qPCR) or metabolic indicators. Practical considerations as well as information provided about phage activity are reviewed for each technique. Finally, we also discuss the analytical and interpretative requirements for the implementation of a phage susceptibility testing tool in routine clinical microbiology.


Assuntos
Bacteriófagos , Terapia por Fagos , Ágar , Antibacterianos , Bacteriófagos/genética , Farmacorresistência Bacteriana Múltipla
12.
Elife ; 112022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35188102

RESUMO

With rising antibiotic resistance, there has been increasing interest in treating pathogenic bacteria with bacteriophages (phage therapy). One limitation of phage therapy is the ease at which bacteria can evolve resistance. Negative effects of resistance may be mitigated when resistance results in reduced bacterial growth and virulence, or when phage coevolves to overcome resistance. Resistance evolution and its consequences are contingent on the bacteria-phage combination and their environmental context, making therapeutic outcomes hard to predict. One solution might be to conduct 'in vitro evolutionary simulations' using bacteria-phage combinations from the therapeutic context. Overall, our aim was to investigate parallels between in vitro experiments and in vivo dynamics in a human participant. Evolutionary dynamics were similar, with high levels of resistance evolving quickly with limited evidence of phage evolution. Resistant bacteria-evolved in vitro and in vivo-had lower virulence. In vivo, this was linked to lower growth rates of resistant isolates, whereas in vitro phage resistant isolates evolved greater biofilm production. Population sequencing suggests resistance resulted from selection on de novo mutations rather than sorting of existing variants. These results highlight the speed at which phage resistance can evolve in vivo, and how in vitro experiments may give useful insights for clinical evolutionary outcomes.


Assuntos
Bacteriófagos , Terapia por Fagos , Bacteriófagos/genética , Biofilmes , Humanos , Terapia por Fagos/métodos , Pseudomonas aeruginosa/genética , Virulência
13.
Nat Commun ; 13(1): 302, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042848

RESUMO

A 30-year-old bombing victim with a fracture-related pandrug-resistant Klebsiella pneumoniae infection after long-term (>700 days) antibiotic therapy is treated with a pre-adapted bacteriophage along with meropenem and colistin, followed by ceftazidime/avibactam. This salvage therapy results in objective clinical, microbiological and radiological improvement of the patient's wounds and overall condition. In support, the bacteriophage and antibiotic combination is highly effective against the patient's K. pneumoniae strain in vitro, in 7-day mature biofilms and in suspensions.


Assuntos
Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla , Fraturas Ósseas/microbiologia , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/terapia , Klebsiella pneumoniae/fisiologia , Terapia por Fagos , Adulto , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/uso terapêutico , Bacteriófagos/genética , Bacteriófagos/ultraestrutura , Biofilmes/efeitos dos fármacos , Ceftazidima/farmacologia , Ceftazidima/uso terapêutico , Ilhas de CpG/genética , Combinação de Medicamentos , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Fraturas Ósseas/complicações , Fraturas Ósseas/diagnóstico por imagem , Genoma Viral , Humanos , Infecções por Klebsiella/complicações , Infecções por Klebsiella/diagnóstico por imagem , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/isolamento & purificação , Testes de Sensibilidade Microbiana , Polimorfismo de Nucleotídeo Único/genética , Proteômica , Replicon/genética
14.
Lancet Infect Dis ; 22(8): e208-e220, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35248167

RESUMO

According to the latest reports from WHO, the incidence of antibiotic-resistant bacterial infections is increasing worldwide, resulting in increased morbidity and mortality and a rising pressure on health-care systems. However, the development of new antibiotics is an expensive and time-consuming process, urging scientists to seek alternative antimicrobial strategies. Over the past few decades, the concept of therapeutic administration of bacteriophages (also known as phages) has gained popularity worldwide. Although conceptually promising, the widespread implementation of phage therapy in routine clinical practice is restricted by the scarcity of safety and efficacy data obtained according to the strict standards of the applicable clinical trial regulations. In this systematic review, we list clinical data published between Jan 1, 2000 and Aug 14, 2021 on the safety and efficacy of phage therapy for difficult-to-treat bacterial infections, and provide an overview of trials and case studies on the use of phage therapy in several medical disciplines.


Assuntos
Infecções Bacterianas , Bacteriófagos , Terapia por Fagos , Antibacterianos/uso terapêutico , Bactérias , Infecções Bacterianas/tratamento farmacológico , Humanos , Terapia por Fagos/métodos
15.
Nat Commun ; 13(1): 5725, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175406

RESUMO

Post-operative bacterial infections are a leading cause of mortality and morbidity after ongoing liver transplantation. Bacteria causing these infections in the hospital setting can exhibit high degrees of resistance to multiple types of antibiotics, which leads to major therapeutic hurdles. Alternate ways of treating these antibiotic-resistant infections are thus urgently needed. Phage therapy is one of them and consists in using selected bacteriophage viruses - viruses who specifically prey on bacteria, naturally found in various environmental samples - as bactericidal agents in replacement or in combination with antibiotics. The use of phage therapy raises various research questions to further characterize what determines therapeutic success or failure. In this work, we report the story of a toddler who suffered from extensively drug-resistant Pseudomonas aeruginosa sepsis after liver transplantation. He was treated by a bacteriophage-antibiotic intravenous combination therapy for 86 days. This salvage therapy was well tolerated, without antibody-mediated phage neutralization. It was associated with objective clinical and microbiological improvement, eventually allowing for liver retransplantation and complete resolution of all infections. Clear in vitro phage-antibiotic synergies were observed. The occurrence of bacterial phage resistance did not result in therapeutic failure, possibly due to phage-induced virulence tradeoffs, which we investigated in different experimental models.


Assuntos
Bacteriófagos , Transplante de Fígado , Terapia por Fagos , Infecções por Pseudomonas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Pré-Escolar , Humanos , Masculino , Infecções por Pseudomonas/terapia
16.
Virol J ; 8: 134, 2011 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-21429206

RESUMO

BACKGROUND: Although horizontal gene transfer plays a pivotal role in bacteriophage evolution, many lytic phage genomes are clearly shaped by vertical evolution. We investigated the influence of minor genomic deletions and insertions on various phage-related phenotypic and serological properties. FINDINGS: We collected ten different isolates of Pseudomonas aeruginosa bacteriophage ϕKMV. All sequenced genomes (42-43 kb, long direct terminal repeats) are nearly identical, which intuitively implied strongly similar infections cycles. However, their latent periods vary between 21 and 28 minutes and they are able to lyse between 5 and 58% of a collection of 107 clinical P. aeruginosa strains. We also noted that phages with identical tail structures displayed profound differences in host spectra. Moreover, point mutations in tail and spike proteins were sufficient to evade neutralization by two phage-specific antisera, isolated from rabbits. CONCLUSION: Although all analyzed phages are 83-97% identical at the genome level, they display a surprisingly large variation in various phenotypic properties. The small overlap in host spectrum and their ability to readily escape immune defences against a nearly identical phage are promising elements for the application of these phages in phage therapy.


Assuntos
Bacteriófagos/fisiologia , Biodiversidade , Genoma Viral , Pseudomonas aeruginosa/virologia , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Genótipo , Especificidade de Hospedeiro , Dados de Sequência Molecular , Fenótipo
17.
Viruses ; 13(10)2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34696328

RESUMO

Phage therapy (PT) shows promising potential in managing biofilm infections, which include refractory orthopedic infections. We report the case of a 13-year-old girl who developed chronic polymicrobial biofilm infection of a pelvic bone allograft after Ewing's sarcoma resection surgery. Chronic infection by Clostridium hathewayi, Proteus mirabilis and Finegoldia magna was worsened by methicillin-susceptible Staphylococcus aureus exhibiting an inducible Macrolides-Lincosamides-Streptogramin B resistance phenotype (iMLSB). After failure of conventional conservative treatment, combination of in situ anti-S. aureus PT with surgical debridement and intravenous antibiotic therapy led to marked clinical and microbiological improvement, yet failed to prevent a recurrence of infection on the midterm. This eventually led to surgical graft replacement. Multiple factors can explain this midterm failure, among which incomplete coverage of the polymicrobial infection by PT. Indeed, no phage therapy against C. hathewayi, P. mirabilis or F. magna could be administered. Phage-antibiotic interactions were investigated using OmniLog® technology. Our results suggest that phage-antibiotic interactions should not be considered "unconditionally synergistic", and should be assessed on a case-by-case basis. Specific pharmacodynamics of phages and antibiotics might explain these differences. More than two years after final graft replacement, the patient remains cured of her sarcoma and no further infections occurred.


Assuntos
Aloenxertos/microbiologia , Antibacterianos/farmacologia , Osso e Ossos/microbiologia , Coinfecção/terapia , Terapia por Fagos/métodos , Infecções Estafilocócicas/terapia , Fagos de Staphylococcus/fisiologia , Staphylococcus aureus/efeitos dos fármacos , Aloenxertos/efeitos dos fármacos , Biofilmes , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Criança , Interações Medicamentosas , Feminino , Humanos , Sarcoma de Ewing/tratamento farmacológico , Infecções Estafilocócicas/diagnóstico
18.
Viruses ; 13(10)2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34696475

RESUMO

Since the beginning of the 20th century, bacteriophages (phages), i.e., viruses that infect bacteria, have been used as antimicrobial agents for treating various infections. Phage preparations targeting a number of bacterial pathogens are still in use in the post-Soviet states and are experiencing a revival in the Western world. However, phages have never been used to treat diseases caused by Bacteroides fragilis, the leading agent cultured in anaerobic abscesses and postoperative peritonitis. Enterotoxin-producing strains of B. fragilis have been associated with the development of inflammatory diarrhea and colorectal carcinoma. In this study, we evaluated the molecular biosafety and antimicrobial properties of novel phage species vB_BfrS_VA7 (VA7) lysate, as well as its impact on cytokine IL-8 production in an enterotoxigenic B. fragilis (ETBF)-infected colonic epithelial cell (CEC) culture model. Compared to untreated infected cells, the addition of phage VA7 to ETBF-infected CECs led to significantly reduced bacterial counts and IL-8 levels. This in vitro study confirms the potential of phage VA7 as an antibacterial agent for use in prophylaxis or in the treatment of B. fragilis infections and associated colorectal carcinoma.


Assuntos
Bacteriófagos , Infecções por Bacteroides/terapia , Bacteroides fragilis/virologia , Terapia por Fagos , Bacteriófagos/isolamento & purificação , Bacteriófagos/ultraestrutura , Colo/patologia , Neoplasias Colorretais , Diarreia , Células Epiteliais , Humanos
19.
Viruses ; 13(5)2021 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066841

RESUMO

In Belgium, the incorporation of phages into magistral preparations for human application has been permitted since 2018. The stability of such preparations is of high importance to guarantee quality and efficacy throughout treatments. We evaluated the ability to preserve infectivity of four different phages active against three different bacterial species in five different buffer and infusion solutions commonly used in medicine and biotechnological manufacturing processes, at two different concentrations (9 and 7 log pfu/mL), stored at 4 °C. DPBS without Ca2+ and Mg2+ was found to be the best option, compared to the other solutions. Suspensions with phage concentrations of 7 log pfu/mL were unsuited as their activity dropped below the effective therapeutic dose (6-9 log pfu/mL), even after one week of storage at 4 °C. Strong variability between phages was observed, with Acinetobacter baumannii phage Acibel004 being stable in four out of five different solutions. We also studied the long term storage of lyophilized staphylococcal phage ISP, and found that the titer could be preserved during a period of almost 8 years when sucrose and trehalose were used as stabilizers. After rehydration of the lyophilized ISP phage in saline, the phage solutions remained stable at 4 °C during a period of 126 days.


Assuntos
Bacteriófagos/fisiologia , Excipientes Farmacêuticos , Soluções , Bactérias/virologia , Liofilização , Humanos , Excipientes Farmacêuticos/química , Temperatura
20.
Viruses ; 13(9)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34578366

RESUMO

Phage therapy is an experimental therapeutic approach used to target multidrug-resistant bacterial infections. A lack of reliable data with regard to its efficacy and regulatory hurdles hinders a broad application. Here we report, for the first time, a case of vancomycin-resistant Enterococcus faecium abdominal infection in a one-year-old, critically ill, and three times liver transplanted girl, which was successfully treated with intravenous injections (twice per day for 20 days) of a magistral preparation containing two Enterococcus phages. This correlated with a reduction in baseline C-reactive protein (CRP), successful weaning from mechanical ventilation and without associated clinical adverse events. Prior to clinical use, phage genome was sequenced to confirm the absence of genetic determinants conferring lysogeny, virulence or antibiotic resistance, and thus their safety. Using a phage neutralization assay, no neutralizing anti-phage antibodies in the patient's serum could be detected. Vancomycin-susceptible E. faecium isolates were identified in close relation to phage therapy and, by using whole-genome sequencing, it was demonstrated that vancomycin-susceptible E. faecium emerged from vancomycin-resistant progenitors. Covering a one year follow up, we provide further evidence for the feasibility of bacteriophage therapy that can serve as a basis for urgently needed controlled clinical trials.


Assuntos
Antibacterianos/farmacologia , Enterococcus faecium/efeitos dos fármacos , Infecções por Bactérias Gram-Positivas/terapia , Transplante de Fígado/efeitos adversos , Terapia por Fagos/métodos , Vancomicina/farmacologia , Infecção Hospitalar , Farmacorresistência Bacteriana Múltipla , Enterococcus faecium/genética , Feminino , Genoma Bacteriano , Infecções por Bactérias Gram-Positivas/etiologia , Humanos , Lactente , Testes de Sensibilidade Microbiana , Resultado do Tratamento , Enterococos Resistentes à Vancomicina , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA