Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Blood Adv ; 7(12): 2811-2824, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-36763527

RESUMO

Engraftment and differentiation of donor hematopoietic stem cells is decisive for the clinical success of allogeneic stem cell transplantation (alloSCT) and depends on the recipient's bone marrow (BM) niche. A damaged niche contributes to poor graft function after alloSCT; however, the underlying mechanisms and the role of BM multipotent mesenchymal stromal cells (MSC) are ill-defined. Upon multivariate analysis in 732 individuals, we observed a reduced presence of proliferation-capable MSC in BM aspirates from patients (N = 196) who had undergone alloSCT. This was confirmed by paired analysis in 30 patients showing a higher frequency of samples with a lack of MSC presence post-alloSCT compared with pre-alloSCT. This reduced MSC presence was associated with reduced survival of patients after alloSCT and specifically with impaired graft function. Post-alloSCT MSC showed diminished in vitro proliferation along with a transcriptional antiproliferative signature, upregulation of epithelial-mesenchymal transition and extracellular matrix pathways, and altered impact on cytokine release upon contact with hematopoietic cells. To avoid in vitro culture bias, we isolated the CD146+/CD45-/HLA-DR- BM cell fraction, which comprised the entire MSC population. The post-alloSCT isolated native CD146+MSC showed a similar reduction in proliferation capacity and shared the same antiproliferative transcriptomic signature as for post-alloSCT colony-forming unit fibroblast-derived MSC. Taken together, our data show that alloSCT confers damage to the proliferative capacity of native MSC, which is associated with reduced patient survival after alloSCT and impaired engraftment of allogeneic hematopoiesis. These data represent the basis to elucidate mechanisms of BM niche reconstitution after alloSCT and its therapeutic manipulation.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Mesenquimais , Humanos , Medula Óssea , Antígeno CD146/metabolismo , Células da Medula Óssea , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Células-Tronco Mesenquimais/metabolismo , Proliferação de Células
2.
Cell Stem Cell ; 30(5): 706-721.e8, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37098346

RESUMO

Inter-patient variability and the similarity of healthy and leukemic stem cells (LSCs) have impeded the characterization of LSCs in acute myeloid leukemia (AML) and their differentiation landscape. Here, we introduce CloneTracer, a novel method that adds clonal resolution to single-cell RNA-seq datasets. Applied to samples from 19 AML patients, CloneTracer revealed routes of leukemic differentiation. Although residual healthy and preleukemic cells dominated the dormant stem cell compartment, active LSCs resembled their healthy counterpart and retained erythroid capacity. By contrast, downstream myeloid progenitors constituted a highly aberrant, disease-defining compartment: their gene expression and differentiation state affected both the chemotherapy response and leukemia's ability to differentiate into transcriptomically normal monocytes. Finally, we demonstrated the potential of CloneTracer to identify surface markers misregulated specifically in leukemic cells. Taken together, CloneTracer reveals a differentiation landscape that mimics its healthy counterpart and may determine biology and therapy response in AML.


Assuntos
Leucemia Mieloide Aguda , Multiômica , Humanos , Leucemia Mieloide Aguda/genética , Diferenciação Celular , Células-Tronco Neoplásicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA