RESUMO
A high-throughput screening (HTS) campaign was carried out for Trypanosoma cruzi glucokinase (TcGlcK), a potential drug-target of the pathogenic protozoan parasite. Glycolysis and the pentose phosphate pathway (PPP) are important metabolic pathways for T. cruzi and the inhibition of the glucose kinases (i.e. glucokinase and hexokinase) may be a strategic approach for drug discovery. Glucose kinases phosphorylate d-glucose with co-substrate ATP to yield G6P, and moreover, the produced G6P enters both pathways for catabolism. The TcGlcK - HTS campaign revealed 25 novel enzyme inhibitors that were distributed in nine chemical classes and were discovered from a primary screen of 13,040 compounds. Thirteen of these compounds were found to have low micromolar IC50 enzyme - inhibition values; strikingly, four of those compounds exhibited low toxicity towards NIH-3T3 murine host cells and notable in vitro trypanocidal activity. These compounds were of three chemical classes: (a) the 3-nitro-2-phenyl-2H-chromene scaffold, (b) the N-phenyl-benzenesulfonamide scaffold, and (c) the gossypol scaffold. Two compounds from the 3-nitro-2-phenyl-2H-chromene scaffold were determined to be hit-to-lead candidates that can proceed further down the early-stage drug discovery process.
Assuntos
Doença de Chagas/tratamento farmacológico , Inibidores Enzimáticos/uso terapêutico , Glucoquinase/uso terapêutico , Ensaios de Triagem em Larga Escala/métodos , Inibidores Enzimáticos/farmacologia , Glucoquinase/farmacologia , Trypanosoma cruziRESUMO
Chagas disease, an infectious condition caused by Trypanosoma cruzi, lacks treatment with drugs with desired efficacy and safety profiles. To address this unmet medical need, a set of trypanocidal compounds were identified through a large multicenter phenotypic-screening initiative and assembled in the GSK Chagas Box. In the present work, we report the screening of the Chagas Box against T. cruzi malic enzymes (MEs) and the identification of three potent inhibitors of its cytosolic isoform (TcMEc). One of these compounds, TCMDC-143108 (1), came out as a nanomolar inhibitor of TcMEc, and 14 new derivatives were synthesized and tested for target inhibition and efficacy against the parasite. Moreover, we determined the crystallographic structures of TcMEc in complex with TCMDC-143108 (1) and six derivatives, revealing the allosteric inhibition site and the determinants of specificity. Our findings connect phenotypic hits from the Chagas Box to a relevant metabolic target in the parasite, providing data to foster new structure-activity guided hit optimization initiatives.
Assuntos
Doença de Chagas , Tripanossomicidas , Trypanosoma cruzi , Doença de Chagas/tratamento farmacológico , Humanos , Sulfonamidas , Tripanossomicidas/farmacologiaRESUMO
Ragulator is a pentamer composed of p18, MP1, p14, C7orf59, and hepatitis B virus X-interacting protein (HBXIP; LAMTOR 1-5) which acts as a lysosomal scaffold of the Rag GTPases in the amino acid sensitive branch of TORC1 signaling. Here, we present the crystal structure of human HBXIP-C7orf59 dimer (LAMTOR 4/5) at 2.9 Å and identify a phosphorylation site on C7orf59 which modulates its interaction with p18. Additionally, we demonstrate the requirement of HBXIP-C7orf59 to stabilize p18 and allow further binding of MP1-p14. The structure of the dimer revealed an unfolded N terminus in C7orf59 (residues 1-15) which was shown to be essential for p18 binding. Full-length p18 does not interact stably with MP1-p14 in the absence of HBXIP-C7orf59, but deletion of p18 residues 108-161 rescues MP1-p14 binding. C7orf59 was phosphorylated by protein kinase A (PKA) in vitro and mutation of the conserved Ser67 residue to aspartate prevented phosphorylation and negatively affected the C7orf59 interaction with p18 both in cell culture and in vitro. C7orf59 Ser67 was phosphorylated in human embryonic kidney 293T cells. PKA activation with forskolin induced dissociation of p18 from C7orf59, which was prevented by the PKA inhibitor H-89. Our results highlight the essential role of HBXIP-C7orf59 dimer as a nucleator of pentameric Ragulator and support a sequential model of Ragulator assembly in which HBXIP-C7orf59 binds and stabilizes p18 which allows subsequent binding of MP1-p14.
Assuntos
Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Células Cultivadas , Cristalografia por Raios X , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Fosforilação , Conformação ProteicaRESUMO
Human African trypanosomiasis, Chagas disease, and leishmaniasis are human infections caused by kinetoplastid parasites of the genera Trypanosoma and Leishmania. Besides their severity and global impact, treatments are still challenging. Currently available drugs have important limitations, highlighting the urgent need to develop new drugs. Phosphoglucose isomerase (PGI) is considered a promising target for the development of antiparasitic drugs, as it acts on two essential metabolic pathways, glycolysis and gluconeogenesis. Herein, we describe the identification of new nonphosphorylated inhibitors of Leishmania mexicana PGI ( LmPGI), with the potential for the development of antiparasitic drugs. A fluorescence-based high-throughput screening (HTS) assay was developed by coupling the activities of recombinant LmPGI with glucose-6-phosphate dehydrogenase and diaphorase. This coupled assay was used to screen 42,720 compounds from ChemBridge and TimTec commercial libraries. After confirmatory assays, selected LmPGI inhibitors were tested against homologous Trypanosoma cruzi and humans. The PGI hits are effective against trypanosomatid PGIs, with IC50 values in the micromolar range, and also against the human homologous enzyme. A computational analysis of cavities present on PGI's crystallographic structure suggests a potential binding site for the proposed mixed-type inhibition mechanism.
Assuntos
Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Glucose-6-Fosfato Isomerase/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas , Relação Dose-Resposta a Droga , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/química , Glucose-6-Fosfato Isomerase/química , Glucose-6-Fosfato Isomerase/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Relação Quantitativa Estrutura-AtividadeRESUMO
The enzyme glucose-6-phosphate dehydrogenase from Trypanosoma cruzi (TcG6PDH) catalyses the first step of the pentose phosphate pathway (PPP) and is considered a promising target for the discovery of a new drug against Chagas diseases. In the present work, we describe the crystal structure of TcG6PDH obtained in a ternary complex with the substrate ß-d-glucose-6-phosphate (G6P) and the reduced 'catalytic' cofactor NADPH, which reveals the molecular basis of substrate and cofactor recognition. A comparison with the homologous human protein sheds light on differences in the cofactor-binding site that might be explored towards the design of new NADP(+) competitive inhibitors targeting the parasite enzyme.
Assuntos
Doença de Chagas/tratamento farmacológico , Coenzimas/química , Glucosefosfato Desidrogenase/química , Conformação Proteica , Trypanosoma cruzi/enzimologia , Sequência de Aminoácidos/genética , Animais , Sítios de Ligação/efeitos dos fármacos , Doença de Chagas/genética , Coenzimas/metabolismo , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Glucose-6-Fosfato/metabolismo , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Humanos , NADP/metabolismo , Via de Pentose Fosfato/genética , Especificidade por Substrato , Trypanosoma cruzi/patogenicidadeRESUMO
The enzyme glucose-6-phosphate dehydrogenase (G6PDH) catalyzes the first step of the oxidative branch of the pentose phosphate pathway, which provides cells with NADPH, an essential cofactor for many biosynthetic pathways and antioxidizing enzymes. In Trypanosoma cruzi, the G6PDH has being pursued as a relevant target for the development of new drugs against Chagas disease. At present, the best characterized inhibitors of T. cruzi G6PDH are steroidal halogenated compounds derivatives from the mammalian hormone precursor dehydroepiandrosterone, which indeed are also good inhibitors of the human homologue enzyme. The lack of target selectivity might result in hemolytic side effects due to partial inhibition of human G6PDH in red blood cells. Moreover, the treatment of Chagas patients with steroidal drugs might also cause undesired androgenic side effects. Aiming to identify of new chemical classes of T. cruzi G6PDH inhibitors, we performed a target-based high-throughput screen campaign against a commercial library of diverse compounds. Novel TcG6PDH inhibitors were identified among thienopyrimidine and quinazolinone derivatives. Preliminary structure activity relationships for the identified hits are presented, including structural features that contribute for selectivity toward the parasite enzyme. Our results indicate that quinazolinones are promising hits that should be considered for further optimization.
Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glucosefosfato Desidrogenase/antagonistas & inibidores , Descoberta de Drogas , Glucosefosfato Desidrogenase/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Pirimidinas/química , Pirimidinas/farmacologia , Quinazolinonas/química , Quinazolinonas/farmacologia , Relação Estrutura-Atividade , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/enzimologiaRESUMO
Phosphoglycerate mutases (PGAMs) participate in both the glycolytic and the gluconeogenic pathways in reversible isomerization of 3-phosphoglycerate and 2-phosphoglycerate. PGAMs are members of two distinct protein families: enzymes that are dependent on or independent of the 2,3-bisphosphoglycerate cofactor. We determined the X-ray structure of the monomeric Trypanosoma brucei independent PGAM (TbiPGAM) in its apoenzyme form, and confirmed this observation by small angle X-ray scattering data. Comparing the TbiPGAM structure with the Leishmania mexicana independent PGAM structure, previously reported with a phosphoglycerate molecule bound to the active site, revealed the domain movement resulting from active site occupation. The structure reported here shows the interaction between Asp319 and the metal bound to the active site, and its contribution to the domain movement. Substitution of the metal-binding residue Asp319 by Ala resulted in complete loss of independent PGAM activity, and showed for the first time its involvement in the enzyme's function. As TbiPGAM is an attractive molecular target for drug development, the apoenzyme conformation described here provides opportunities for its use in structure-based drug design approaches. Database Structural data for the Trypanosoma brucei 2,3-bisphosphoglycerate-independent phosphoglycerate mutase (iPGAM) has been deposited with the Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank under code 3NVL.