Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
PLoS Biol ; 12(11): e1002007, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25422947

RESUMO

Neuronal firing, synaptic transmission, and its plasticity form the building blocks for processing and storage of information in the brain. It is unknown whether adult human synapses are more efficient in transferring information between neurons than rodent synapses. To test this, we recorded from connected pairs of pyramidal neurons in acute brain slices of adult human and mouse temporal cortex and probed the dynamical properties of use-dependent plasticity. We found that human synaptic connections were purely depressing and that they recovered three to four times more swiftly from depression than synapses in rodent neocortex. Thereby, during realistic spike trains, the temporal resolution of synaptic information exchange in human synapses substantially surpasses that in mice. Using information theory, we calculate that information transfer between human pyramidal neurons exceeds that of mouse pyramidal neurons by four to nine times, well into the beta and gamma frequency range. In addition, we found that human principal cells tracked fine temporal features, conveyed in received synaptic inputs, at a wider bandwidth than for rodents. Action potential firing probability was reliably phase-locked to input transients up to 1,000 cycles/s because of a steep onset of action potentials in human pyramidal neurons during spike trains, unlike in rodent neurons. Our data show that, in contrast to the widely held views of limited information transfer in rodent depressing synapses, fast recovering synapses of human neurons can actually transfer substantial amounts of information during spike trains. In addition, human pyramidal neurons are equipped to encode high synaptic information content. Thus, adult human cortical microcircuits relay information at a wider bandwidth than rodent microcircuits.


Assuntos
Neocórtex/fisiologia , Células Piramidais/fisiologia , Sinapses/fisiologia , Adolescente , Adulto , Animais , Humanos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Adulto Jovem
2.
J Neurosci ; 33(43): 17197-208, 2013 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-24155324

RESUMO

The neocortex in our brain stores long-term memories by changing the strength of connections between neurons. To date, the rules and mechanisms that govern activity-induced synaptic changes at human cortical synapses are poorly understood and have not been studied directly at a cellular level. Here, we made whole-cell recordings of human pyramidal neurons in slices of brain tissue resected during neurosurgery to investigate spike timing-dependent synaptic plasticity in the adult human neocortex. We find that human cortical synapses can undergo bidirectional modifications in strength throughout adulthood. Both long-term potentiation and long-term depression of synapses was dependent on postsynaptic NMDA receptors. Interestingly, we find that human cortical synapses can associate presynaptic and postsynaptic events in a wide temporal window, and that rules for synaptic plasticity in human neocortex are reversed compared with what is generally found in the rodent brain. We show this is caused by dendritic L-type voltage-gated Ca2+ channels that are prominently activated during action potential firing. Activation of these channels determines whether human synapses strengthen or weaken. These findings provide a synaptic basis for the timing rules observed in human sensory and motor plasticity in vivo, and offer insights into the physiological role of L-type voltage-gated Ca2+ channels in the human brain.


Assuntos
Potenciação de Longa Duração , Depressão Sináptica de Longo Prazo , Neocórtex/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/fisiologia , Potenciais de Ação , Adolescente , Adulto , Canais de Cálcio Tipo L/metabolismo , Dendritos/metabolismo , Dendritos/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neocórtex/citologia , Neocórtex/metabolismo , Células Piramidais/metabolismo , Células Piramidais/fisiologia
3.
J Neurophysiol ; 112(2): 287-99, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24760781

RESUMO

Synaptic plasticity rules change during development: while hippocampal synapses can be potentiated by a single action potential pairing protocol in young neurons, mature neurons require burst firing to induce synaptic potentiation. An essential component for spike timing-dependent plasticity is the backpropagating action potential (BAP). BAP along the dendrites can be modulated by morphology and ion channel composition, both of which change during late postnatal development. However, it is unclear whether these dendritic changes can explain the developmental changes in synaptic plasticity induction rules. Here, we show that tonic GABAergic inhibition regulates dendritic action potential backpropagation in adolescent, but not preadolescent, CA1 pyramidal neurons. These developmental changes in tonic inhibition also altered the induction threshold for spike timing-dependent plasticity in adolescent neurons. This GABAergic regulatory effect on backpropagation is restricted to distal regions of apical dendrites (>200 µm) and mediated by α5-containing GABA(A) receptors. Direct dendritic recordings demonstrate α5-mediated tonic GABA(A) currents in adolescent neurons which can modulate BAPs. These developmental modulations in dendritic excitability could not be explained by concurrent changes in dendritic morphology. To explain our data, model simulations propose a distally increasing or localized distal expression of dendritic α5 tonic inhibition in mature neurons. Overall, our results demonstrate that dendritic integration and plasticity in more mature dendrites are significantly altered by tonic α5 inhibition in a dendritic region-specific and developmentally regulated manner.


Assuntos
Potenciais de Ação , Região CA1 Hipocampal/fisiologia , Dendritos/fisiologia , Antagonistas GABAérgicos/farmacologia , Plasticidade Neuronal , Células Piramidais/fisiologia , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/crescimento & desenvolvimento , Região CA1 Hipocampal/metabolismo , Dendritos/efeitos dos fármacos , Dendritos/metabolismo , Dendritos/ultraestrutura , Potenciais Pós-Sinápticos Excitadores , Agonistas GABAérgicos/farmacologia , Potenciais Pós-Sinápticos Inibidores , Masculino , Células Piramidais/efeitos dos fármacos , Células Piramidais/crescimento & desenvolvimento , Células Piramidais/metabolismo , Ratos , Ratos Wistar , Receptores de GABA-A/metabolismo
4.
PLoS Comput Biol ; 8(6): e1002545, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22719238

RESUMO

CA1 pyramidal neurons receive hundreds of synaptic inputs at different distances from the soma. Distance-dependent synaptic scaling enables distal and proximal synapses to influence the somatic membrane equally, a phenomenon called "synaptic democracy". How this is established is unclear. The backpropagating action potential (BAP) is hypothesised to provide distance-dependent information to synapses, allowing synaptic strengths to scale accordingly. Experimental measurements show that a BAP evoked by current injection at the soma causes calcium currents in the apical shaft whose amplitudes decay with distance from the soma. However, in vivo action potentials are not induced by somatic current injection but by synaptic inputs along the dendrites, which creates a different excitable state of the dendrites. Due to technical limitations, it is not possible to study experimentally whether distance information can also be provided by synaptically-evoked BAPs. Therefore we adapted a realistic morphological and electrophysiological model to measure BAP-induced voltage and calcium signals in spines after Schaffer collateral synapse stimulation. We show that peak calcium concentration is highly correlated with soma-synapse distance under a number of physiologically-realistic suprathreshold stimulation regimes and for a range of dendritic morphologies. Peak calcium levels also predicted the attenuation of the EPSP across the dendritic tree. Furthermore, we show that peak calcium can be used to set up a synaptic democracy in a homeostatic manner, whereby synapses regulate their synaptic strength on the basis of the difference between peak calcium and a uniform target value. We conclude that information derived from synaptically-generated BAPs can indicate synapse location and can subsequently be utilised to implement a synaptic democracy.


Assuntos
Sinalização do Cálcio/fisiologia , Dendritos/fisiologia , Modelos Neurológicos , Sinapses/fisiologia , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Biologia Computacional , Simulação por Computador , Potenciais Evocados , Masculino , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/fisiologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo
5.
Cereb Cortex ; 22(6): 1333-42, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21856714

RESUMO

Neuronal theories of neurodevelopmental disorders (NDDs) of autism and mental retardation propose that abnormal connectivity underlies deficits in attentional processing. We tested this theory by studying unitary synaptic connections between layer 5 pyramidal neurons within medial prefrontal cortex (mPFC) networks in the Fmr1-KO mouse model for mental retardation and autism. In line with predictions from neurocognitive theory, we found that neighboring pyramidal neurons were hyperconnected during a critical period in early mPFC development. Surprisingly, excitatory synaptic connections between Fmr1-KO pyramidal neurons were significantly slower and failed to recover from short-term depression as quickly as wild type (WT) synapses. By 4-5 weeks of mPFC development, connectivity rates were identical for both KO and WT pyramidal neurons and synapse dynamics changed from depressing to facilitating responses with similar properties in both groups. We propose that the early alteration in connectivity and synaptic recovery are tightly linked: using a network model, we show that slower synapses are essential to counterbalance hyperconnectivity in order to maintain a dynamic range of excitatory activity. However, the slow synaptic time constants induce decreased responsiveness to low-frequency stimulation, which may explain deficits in integration and early information processing in attentional neuronal networks in NDDs.


Assuntos
Transtorno Autístico/fisiopatologia , Modelos Animais de Doenças , Deficiência Intelectual/fisiopatologia , Rede Nervosa/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Sinapses/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Rede Nervosa/crescimento & desenvolvimento , Córtex Pré-Frontal/crescimento & desenvolvimento , Sinapses/patologia , Transmissão Sináptica/fisiologia
6.
J Biol Chem ; 286(29): 25495-504, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21596744

RESUMO

Fragile X syndrome (FXS), the most common form of hereditary mental retardation, is caused by a loss-of-function mutation of the Fmr1 gene, which encodes fragile X mental retardation protein (FMRP). FMRP affects dendritic protein synthesis, thereby causing synaptic abnormalities. Here, we used a quantitative proteomics approach in an FXS mouse model to reveal changes in levels of hippocampal synapse proteins. Sixteen independent pools of Fmr1 knock-out mice and wild type mice were analyzed using two sets of 8-plex iTRAQ experiments. Of 205 proteins quantified with at least three distinct peptides in both iTRAQ series, the abundance of 23 proteins differed between Fmr1 knock-out and wild type synapses with a false discovery rate (q-value) <5%. Significant differences were confirmed by quantitative immunoblotting. A group of proteins that are known to be involved in cell differentiation and neurite outgrowth was regulated; they included Basp1 and Gap43, known PKC substrates, and Cend1. Basp1 and Gap43 are predominantly expressed in growth cones and presynaptic terminals. In line with this, ultrastructural analysis in developing hippocampal FXS synapses revealed smaller active zones with corresponding postsynaptic densities and smaller pools of clustered vesicles, indicative of immature presynaptic maturation. A second group of proteins involved in synaptic vesicle release was up-regulated in the FXS mouse model. In accordance, paired-pulse and short-term facilitation were significantly affected in these hippocampal synapses. Together, the altered regulation of presynaptically expressed proteins, immature synaptic ultrastructure, and compromised short-term plasticity points to presynaptic changes underlying glutamatergic transmission in FXS at this stage of development.


Assuntos
Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/patologia , Hipocampo/fisiopatologia , Hipocampo/ultraestrutura , Fenótipo , Proteômica , Sinapses/metabolismo , Actinas/metabolismo , Animais , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/patologia , Região CA1 Hipocampal/fisiopatologia , Região CA1 Hipocampal/ultraestrutura , Diferenciação Celular , Citoesqueleto/metabolismo , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores/fisiologia , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/fisiopatologia , Técnicas de Inativação de Genes , Hipocampo/metabolismo , Hipocampo/patologia , Camundongos , Neuritos/metabolismo , Plasticidade Neuronal/fisiologia , Pseudópodes/metabolismo , Sinapses/patologia , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/patologia , Espectrometria de Massas em Tandem
7.
iScience ; 25(4): 104069, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35372812

RESUMO

FBXO41 is a neuron-specific E3 ligase subunit implicated in epileptic encephalopathies. Fbxo41 null mutant (KO) mice show behavioral deficits and early lethality. Here, we report that loss of FBXO41 causes defects in synaptic transmission and brain development. Cultured Fbxo41 KO neurons had normal morphology and showed no signs of degeneration. Single-cell electrophysiology showed a lower synaptic vesicle release probability in excitatory neurons. Inhibitory neurons exhibited reduced synaptophysin expression, a smaller readily releasable pool, and decreased charge transfer during repetitive stimulation. In Fbxo41 KO hippocampal slices at postnatal day 6, the dentate gyrus was smaller with fewer radial-glial-like cells and immature neurons. In addition, neuronal migration was delayed. Two-photon calcium imaging showed a delayed increase in network activity and synchronicity. Together, our findings point toward a role for FBXO41 in synaptic transmission and postnatal brain development, before behavioral deficits are detected in Fbxo41 KO mice.

8.
Neuron ; 54(4): 627-38, 2007 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-17521574

RESUMO

Fragile X syndrome, caused by a mutation in the Fmr1 gene, is characterized by mental retardation. Several studies reported the absence of long-term potentiation (LTP) at neocortical synapses in Fmr1 knockout (FMR1-KO) mice, but underlying cellular mechanisms are unknown. We find that in the prefrontal cortex (PFC) of FMR1-KO mice, spike-timing-dependent LTP (tLTP) is not so much absent, but rather, the threshold for tLTP induction is increased. Calcium signaling in dendrites and spines is compromised. First, dendrites and spines more often fail to show calcium transients. Second, the activity of L-type calcium channels is absent in spines. tLTP could be restored by improving reliability and amplitude of calcium signaling by increasing neuronal activity. In FMR1-KO mice that were raised in enriched environments, tLTP was restored to WT levels. Our results show that mechanisms for synaptic plasticity are in place in the FMR1-KO mouse PFC, but require stronger neuronal activity to be triggered.


Assuntos
Potenciais de Ação/fisiologia , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Plasticidade Neuronal/fisiologia , Células Piramidais/fisiologia , Animais , Animais Recém-Nascidos , Bloqueadores dos Canais de Cálcio/farmacologia , Córtex Cerebral/citologia , Espinhas Dendríticas/metabolismo , Estimulação Elétrica/métodos , Meio Ambiente , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos da radiação , Feminino , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nifedipino/farmacologia , Técnicas de Patch-Clamp/métodos , Células Piramidais/efeitos dos fármacos , Células Piramidais/efeitos da radiação , Células Piramidais/ultraestrutura , Fatores de Tempo
9.
Neuron ; 54(1): 73-87, 2007 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-17408579

RESUMO

Nicotine enhances attention and working memory by activating nicotinic acetylcholine receptors (nAChRs). The prefrontal cortex (PFC) is critical for these cognitive functions and is also rich in nAChR expression. Specific cellular and synaptic mechanisms underlying nicotine's effects on cognition remain elusive. Here we show that nicotine exposure increases the threshold for synaptic spike-timing-dependent potentiation (STDP) in layer V pyramidal neurons of the mouse PFC. During coincident presynaptic and postsynaptic activity, nicotine reduces dendritic calcium signals associated with action potential propagation by enhancing GABAergic transmission. This results from a series of presynaptic actions involving different PFC interneurons and multiple nAChR subtypes. Pharmacological block of nAChRs or GABA(A) receptors prevented nicotine's actions and restored STDP, as did increasing dendritic calcium signals with stronger postsynaptic activity. Thus, by activating nAChRs distributed throughout the PFC neuronal network, nicotine affects PFC information processing and storage by increasing the amount of postsynaptic activity necessary to induce STDP.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Córtex Pré-Frontal/citologia , Animais , Animais Recém-Nascidos , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Interações Medicamentosas , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Antagonistas GABAérgicos/farmacologia , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/classificação , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos
10.
Neurobiol Dis ; 41(1): 104-10, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20817093

RESUMO

Pharmaceutical treatments are being developed to correct specific behavioural and morphological aspects of neurodevelopmental disorders such as mental retardation. Fragile X syndrome is an X-linked mental retardation with abnormal dendritic protrusions from neurons in the brain. Increased signalling via excitatory metabotropic glutamate receptor (mGluR) pathways is hypothesised to contribute to this disorder. Targeting these receptors has shown improvements in both behaviour and morphology with the Fmr1-KO mouse model for the syndrome. It is not known whether similar changes occur in excitatory synaptic activity following treatment with mGluR antagonists. We tested the effects of prolonged mGluR blockade on excitatory synaptic activity at three developmental time points in hippocampal slices. We observed a rescue effect of the antagonist MPEP upon spontaneous EPSC amplitude and charge at 2 weeks but not 1 week or 8-10 weeks of development. These data support the role of mGluR antagonist treatment for functional synaptic correction at an early developmental stage in a model for fragile X syndrome.


Assuntos
Antagonistas de Aminoácidos Excitatórios/farmacologia , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Hipocampo/crescimento & desenvolvimento , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Transmissão Sináptica/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Feminino , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Órgãos , Piridinas/farmacologia , Piridinas/uso terapêutico , Receptores de Glutamato Metabotrópico/fisiologia , Transmissão Sináptica/genética
11.
Dev Neurobiol ; 81(2): 207-225, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33453138

RESUMO

Spontaneous Synchronous Network Activity (SSA) is a hallmark of neurodevelopment found in numerous central nervous system structures, including neocortex. SSA occurs during restricted developmental time-windows, commonly referred to as critical periods in sensory neocortex. Although part of the neocortex, the critical period for SSA in the medial prefrontal cortex (mPFC) and the underlying mechanisms for generation and propagation are unknown. Using Ca2+ imaging and whole-cell patch-clamp in an acute mPFC slice mouse model, the development of spontaneous activity and SSA was investigated at cellular and network levels during the two first postnatal weeks. The data revealed that developing mPFC neuronal networks are spontaneously active and exhibit SSA in the first two postnatal weeks, with peak synchronous activity at postnatal days (P)8-9. Networks remain active but are desynchronized by the end of this 2-week period. SSA was driven by excitatory ionotropic glutamatergic transmission with a small contribution of excitatory GABAergic transmission at early time points. The neurohormone oxytocin desynchronized SSA in the first postnatal week only without affecting concurrent spontaneous activity. By the end of the second postnatal week, inhibiting GABAA receptors restored SSA. These findings point to the emergence of GABAA receptor-mediated inhibition as a major factor in the termination of SSA in mouse mPFC.


Assuntos
Neurônios , Córtex Pré-Frontal , Animais , Camundongos , Neurônios/fisiologia , Neurotransmissores , Ocitocina , Receptores de GABA-A
12.
Cereb Cortex ; 19(12): 2959-69, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19363149

RESUMO

Spike timing-dependent plasticity (STDP) is a strong candidate for an N-methyl-D-aspartate (NMDA) receptor-dependent form of synaptic plasticity that could underlie the development of receptive field properties in sensory neocortices. Whilst induction of timing-dependent long-term potentiation (t-LTP) requires postsynaptic NMDA receptors, timing-dependent long-term depression (t-LTD) requires the activation of presynaptic NMDA receptors at layer 4-to-layer 2/3 synapses in barrel cortex. Here we investigated the developmental profile of t-LTD at layer 4-to-layer 2/3 synapses of mouse barrel cortex and studied their NMDA receptor subunit dependence. Timing-dependent LTD emerged in the first postnatal week, was present during the second week and disappeared in the adult, whereas t-LTP persisted in adulthood. An antagonist at GluN2C/D subunit-containing NMDA receptors blocked t-LTD but not t-LTP. Conversely, a GluN2A subunit-preferring antagonist blocked t-LTP but not t-LTD. The GluN2C/D subunit requirement for t-LTD appears to be synapse specific, as GluN2C/D antagonists did not block t-LTD at horizontal cross-columnar layer 2/3-to-layer 2/3 synapses, which was blocked by a GluN2B antagonist instead. These data demonstrate an NMDA receptor subunit-dependent double dissociation of t-LTD and t-LTP mechanisms at layer 4-to-layer 2/3 synapses, and suggest that t-LTD is mediated by distinct molecular mechanisms at different synapses on the same postsynaptic neuron.


Assuntos
Potenciais de Ação/fisiologia , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Córtex Somatossensorial/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL
13.
Front Cell Neurosci ; 14: 91, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32372917

RESUMO

The medial entorhinal cortex (MEC) contains specialized cell types whose firing is tuned to aspects of an animal's position and orientation in the environment, reflecting a neuronal representation of space. The spatially tuned firing properties of these cells quickly emerge during the third postnatal week of development in rodents. Spontaneous synchronized network activity (SSNA) has been shown to play a crucial role in the development of neuronal circuits prior to week 3. SSNA in MEC is well described in rodents during the first postnatal week, but there are little data about its development immediately prior to eye opening and spatial exploration. Furthermore, existing data lack single-cell resolution and are not integrated across layers. In this study, we addressed the question of whether the characteristics and underlying mechanisms of SSNA during the second postnatal week resemble that of the first week or whether distinct features emerge during this period. Using a combined calcium imaging and electrophysiology approach in vitro, we confirm that in mouse MEC during the second postnatal week, SSNA persists and in fact peaks, and is dependent on ionotropic glutamatergic signaling. However, SSNA differs from that observed during the first postnatal week in two ways: First, EC does not drive network activity in the hippocampus but only in neighboring neocortex (NeoC). Second, GABA does not drive network activity but influences it in a manner that is dependent both on age and receptor type. Therefore, we conclude that while there is a partial mechanistic overlap in SSNA between the first and second postnatal weeks, unique mechanistic features do emerge during the second week, suggestive of different or additional functions of MEC within the hippocampal-entorhinal circuitry with increasing maturation.

14.
Front Mol Neurosci ; 13: 88, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528248

RESUMO

Changes in excitation and inhibition are associated with the pathobiology of neurodevelopmental disorders of intellectual disability and autism and are widely described in Fragile X syndrome (FXS). In the prefrontal cortex (PFC), essential for cognitive processing, excitatory connectivity and plasticity are found altered in the FXS mouse model, however, little is known about the state of inhibition. To that end, we investigated GABAergic signaling in the Fragile X Mental Retardation 1 (FMR1) knock out (Fmr1-KO) mouse medial PFC (mPFC). We report changes at the molecular, and functional levels of inhibition at three (prepubescence) and six (adolescence) postnatal weeks. Functional changes were most prominent during early postnatal development, resulting in stronger inhibition, through increased synaptic inhibitory drive and amplitude, and reduction of inhibitory short-term synaptic depression. Noise analysis of prepubescent post-synaptic currents demonstrated an increased number of receptors opening during peak current in Fmr1-KO inhibitory synapses. During adolescence amplitudes and plasticity changes normalized, however, the inhibitory drive was now reduced in Fmr1-KO, while synaptic kinetics were prolonged. Finally, adolescent GABAA receptor subunit α2 and GABAB receptor subtype B1 expression levels were different in Fmr1-KOs than WT littermate controls. Together these results extend the degree of synaptic GABAergic alterations in FXS, now to the mPFC of Fmr1-KO mice, a behaviourally relevant brain region in neurodevelopmental disorder pathology.

15.
Sci Rep ; 9(1): 5037, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30911152

RESUMO

Mammalian neocortex is a highly layered structure. Each layer is populated by distinct subtypes of principal cells that are born at different times during development. While the differences between principal cells across layers have been extensively studied, it is not known how the developmental profiles of neurons in different layers compare. Here, we provide a detailed morphological and functional characterisation of pyramidal neurons in mouse mPFC during the first postnatal month, corresponding to known critical periods for synapse and neuron formation in mouse sensory neocortex. Our data demonstrate similar maturation profiles of dendritic morphology and intrinsic properties of pyramidal neurons in both deep and superficial layers. In contrast, the balance of synaptic excitation and inhibition differs in a layer-specific pattern from one to four postnatal weeks of age. Our characterisation of the early development and maturation of pyramidal neurons in mouse mPFC not only demonstrates a comparable time course of postnatal maturation to that in other neocortical circuits, but also implies that consideration of layer- and time-specific changes in pyramidal neurons may be relevant for studies in mouse models of neuropsychiatric and neurodevelopmental disorders.


Assuntos
Neocórtex/crescimento & desenvolvimento , Córtex Pré-Frontal/crescimento & desenvolvimento , Células Piramidais/metabolismo , Animais , Modelos Animais de Doenças , Masculino , Transtornos Mentais/metabolismo , Transtornos Mentais/patologia , Camundongos , Neocórtex/patologia , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/patologia , Córtex Pré-Frontal/patologia , Células Piramidais/patologia
16.
Front Cell Neurosci ; 13: 315, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354435

RESUMO

Group I metabotropic glutamate receptors (mGluRs) mediate a range of signaling and plasticity processes in the brain and are of growing importance as potential therapeutic targets in clinical trials for neuropsychiatric and neurodevelopmental disorders (NDDs). Fundamental knowledge regarding the functional effects of mGluRs upon pyramidal neurons and interneurons is derived largely from rodent brain, and their effects upon human neurons are predominantly untested. We therefore addressed how group I mGluRs affect microcircuits in human neocortex. We show that activation of group I mGluRs elicits action potential firing in Martinotti cells, which leads to increased synaptic inhibition onto neighboring neurons. Some other interneurons, including fast-spiking interneurons, are depolarized but do not fire action potentials in response to group I mGluR activation. Furthermore, we confirm the existence of group I mGluR-mediated depression of excitatory synapses in human pyramidal neurons. We propose that the strong increase in inhibition and depression of excitatory synapses onto layer 2/3 pyramidal neurons upon group I mGluR activation likely results in a shift in the balance between excitation and inhibition in the human cortical network.

17.
Handb Clin Neurol ; 150: 319-333, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29496151

RESUMO

Recordings from fresh human brain slices derived from surgically resected brain tissue are being used to unravel mechanisms underlying human neurophysiology and for the evaluation of potential therapeutic targets and compounds. Data resulting from these studies provide unique insights into physiologic properties of human neuronal microcircuits. However, substantial limitations still remain with this approach. First, the tissue is always resected from patients, never from healthy controls. Second, the patient population undergoing brain surgery with tissue resection is limited to epilepsy and tumor patients - never from patients with other neurologic disorders. Third, the vast majority of tissue resected is limited largely to temporal cortex and hippocampus, occasionally amygdala. Therefore, the possibility to study brain tissue: (1) from healthy controls; (2) from patients with different neuropathologies; (3) from different brain areas; and (4) from a wide spectrum of ages only exists through autopsy-derived brain tissue. Here we describe methods and results from physiologic recordings of adult human neurons and microcircuits in both surgically derived brain tissue as well as in tissue derived from autopsies. We define postmortem time windows during which physiologic recordings could match data obtained from surgical tissue.


Assuntos
Potenciais de Ação/fisiologia , Encéfalo/citologia , Neurônios/fisiologia , Mudanças Depois da Morte , Idoso , Idoso de 80 Anos ou mais , Encéfalo/cirurgia , Morte , Eletrofisiologia , Feminino , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade
18.
Neurotoxicology ; 58: 23-41, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27825840

RESUMO

Development of the mammalian central nervous system is a complex process whose disruption may have severe and long-lasting consequences upon brain structure and function, potentially resulting in a neurodevelopmental disorder (NDD). Many NDDs are known to be genetic in origin, with symptom onset and their underlying mechanisms now known to be regulated during time-dependent windows or 'critical periods' during normal brain development. However, it is increasingly evident that similar disturbances to the developing nervous system may be caused by exposure to non-genetic, environmental factors. Strikingly, at least 200 industrially applied or produced chemicals have been associated with neurotoxicity in humans and exposure to these modifying compounds, through consumer products or environmental pollution, therefore poses serious threats to public health. Through a combination of human epidemiological and animal experimental studies, we identified developmental periods for increased vulnerability to environmentally-modifying compounds and determined whether and how exposure during specific sensitive time-windows could increase the risk for the NDDs of autism, ADHD or schizophrenia in the developing organism. We report that many environmental toxicants have distinct sensitive time-windows during which exposure may disrupt critical developmental events, thereby increasing the risk of developing NDDs. The majority of these time-windows occur prenatally rather than postnatally. We propose four underlying mechanisms that mediate pathogenesis, namely oxidative stress, immune system dysregulation, altered neurotransmission and thyroid hormone disruption. Given the complexity of underlying mechanisms and their prenatal inception, treatment options are currently limited. Thus, we conclude that preventing early exposure to environmental toxicants, by increasing public awareness and improving government and industry guidelines, may ultimately lead to a significant reduction in the incidence of NDDs.


Assuntos
Ecotoxicologia , Poluição Ambiental/efeitos adversos , Transtornos do Neurodesenvolvimento/induzido quimicamente , Síndromes Neurotóxicas/etiologia , Animais , Humanos , Transtornos do Neurodesenvolvimento/epidemiologia
19.
Front Comput Neurosci ; 11: 119, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29375358

RESUMO

Spike Timing-Dependent Plasticity has been found to assume many different forms. The classic STDP curve, with one potentiating and one depressing window, is only one of many possible curves that describe synaptic learning using the STDP mechanism. It has been shown experimentally that STDP curves may contain multiple LTP and LTD windows of variable width, and even inverted windows. The underlying STDP mechanism that is capable of producing such an extensive, and apparently incompatible, range of learning curves is still under investigation. In this paper, it is shown that STDP originates from a combination of two dynamic Hebbian cross-correlations of local activity at the synapse. The correlation of the presynaptic activity with the local postsynaptic activity is a robust and reliable indicator of the discrepancy between the presynaptic neuron and the postsynaptic neuron's activity. The second correlation is between the local postsynaptic activity with dendritic activity which is a good indicator of matching local synaptic and dendritic activity. We show that this simple time-independent learning rule can give rise to many forms of the STDP learning curve. The rule regulates synaptic strength without the need for spike matching or other supervisory learning mechanisms. Local differences in dendritic activity at the synapse greatly affect the cross-correlation difference which determines the relative contributions of different neural activity sources. Dendritic activity due to nearby synapses, action potentials, both forward and back-propagating, as well as inhibitory synapses will dynamically modify the local activity at the synapse, and the resulting STDP learning rule. The dynamic Hebbian learning rule ensures furthermore, that the resulting synaptic strength is dynamically stable, and that interactions between synapses do not result in local instabilities. The rule clearly demonstrates that synapses function as independent localized computational entities, each contributing to the global activity, not in a simply linear fashion, but in a manner that is appropriate to achieve local and global stability of the neuron and the entire dendritic structure.

20.
PLoS One ; 12(6): e0178533, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28586384

RESUMO

Generation of neuronal cultures from induced pluripotent stem cells (hiPSCs) serve the studies of human brain disorders. However we lack neuronal networks with balanced excitatory-inhibitory activities, which are suitable for single cell analysis. We generated low-density networks of hPSC-derived GABAergic and glutamatergic cortical neurons. We used two different co-culture models with astrocytes. We show that these cultures have balanced excitatory-inhibitory synaptic identities using confocal microscopy, electrophysiological recordings, calcium imaging and mRNA analysis. These simple and robust protocols offer the opportunity for single-cell to multi-level analysis of patient hiPSC-derived cortical excitatory-inhibitory networks; thereby creating advanced tools to study disease mechanisms underlying neurodevelopmental disorders.


Assuntos
Astrócitos/fisiologia , Técnicas de Cocultura , Neurônios GABAérgicos/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Astrócitos/citologia , Diferenciação Celular/fisiologia , Células Cultivadas , Fenômenos Eletrofisiológicos , Neurônios GABAérgicos/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA