Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; : e202401712, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38923243

RESUMO

The binding of the potential drug [VIVO(8-HQ)2], where 8-HQ is 8-hydroxyquinolinato, with hen egg white lysozyme (HEWL) was evaluated through spectroscopic (electron paramagnetic resonance, EPR, and UV-visible), spectrometric (electrospray ionization-mass spectrometry, ESI-MS), crystallographic (X-ray diffraction, XRD), and computational (DFT and docking) studies. ESI-MS indicates the interaction of [VIVO(8-HQ)(H2O)]+ and [VIVO(8-HQ)2(H2O)] species with HEWL. Room temperature EPR spectra suggest both covalent and non-covalent binding of the two different V-containing fragments. XRD analyses confirm these findings, showing that [VIVO(8-HQ)(H2O)]+ interacts covalently with the solvent exposed Asp119, while cis-[VIVO(8-HQ)2(H2O)] non-covalently with Arg128 and Lys96 from a symmetry mate. The covalent binding of [VIVO(8-HQ)(H2O)]+ to Asp119 is favored by a π-π contact with Trp62 and a H-bond with Asn103 of a symmetry-related molecule. Additionally, the covalent binding of VVO2+ to Asp48 and non-covalent binding of other V-containing fragments to Arg5, Cys6, and Glu7 is revealed. Molecular docking indicates that, in the absence of the interactions occurring at the protein-protein interface close to Asp119, the binding to Glu35 or Asp52 should be preferred. Such a protein-protein stabilization could be more common than what believed up today, at least in the solid state, and should be considered in the characterization of metal-protein adducts.

2.
Inorg Chem ; 63(1): 564-575, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38117944

RESUMO

The physical and chemical properties of paddlewheel diruthenium compounds are highly dependent on the nature of the ligands surrounding the bimetallic core. Herein, we compare the ability of two diruthenium compounds, [Ru2Cl(D-p-FPhF)(O2CCH3)3]·H2O (1) (D-p-FPhF- = N,N'-bis(4-fluorophenyl)formamidinate) and K3[Ru2(O2CO)4]·3H2O (2), to act as inhibitors of amyloid aggregation of the Aß1-42 peptide and its peculiar fragments, Aß1-16 and Aß21-40. A wide range of biophysical techniques has been used to determine the inhibition capacity against aggregation and the possible mechanism of action of these compounds (Thioflavin T fluorescence and autofluorescence assays, UV-vis absorption spectroscopy, circular dichroism, nuclear magnetic resonance, mass spectrometry, and electron scanning microscopy). Data show that the most effective inhibitory effect is shown for compound 1. This compound inhibits fiber formation and completely abolishes the cytotoxicity of Aß1-42. The antiaggregatory capacity of this complex can be explained by a binding mechanism of the dimetallic units to the peptide chain along with π-π interactions between the formamidinate ligand and the aromatic side chains. The results suggest the potential use of paddlewheel diruthenium complexes as neurodrugs and confirm the importance of the steric and charge effects on the properties of diruthenium compounds.


Assuntos
Peptídeos beta-Amiloides , Fragmentos de Peptídeos , Fragmentos de Peptídeos/química , Peptídeos beta-Amiloides/química , Dicroísmo Circular
3.
Inorg Chem ; 63(21): 10001-10010, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38742626

RESUMO

There is a growing interest in the search for metal-based therapeutics for protein misfolding disorders such as Alzheimer's disease (AD). A novel and largely unexplored class of metallodrugs is constituted by paddlewheel diruthenium complexes, which exhibit unusual water solubility and stability and unique coordination modes to proteins. Here, we investigate the ability of the complexes [Ru2Cl(DPhF)(O2CCH3)3]·H2O (1), [Ru2Cl(DPhF)2(O2CCH3)2]·H2O (2), and K2[Ru2(DPhF)(CO3)3]·3H2O (3) (DPhF- = N,N'-diphenylformamidinate) to interfere with the amyloid aggregation of the Aß1-42 peptide. These compounds differ in charge and steric hindrance due to the coordination of a different number of bulky ligands. The mechanisms of action of the three complexes were studied by employing a plethora of physicochemical and biophysical techniques as well as cellular assays. All these studies converge on different mechanisms of inhibition of amyloid fibrillation: complexes 1 and 2 show a clear inhibitory effect due to an exchange ligand process in the Ru2 unit aided by aromatic interactions. Complex 3 shows no inhibition of aggregation, probably due to its negative charge in solution. This study demonstrates that slight variations in the ligands surrounding the bimetallic core can modulate the amyloid aggregation inhibition and supports the use of paddlewheel diruthenium complexes as promising therapeutics for Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides , Complexos de Coordenação , Fragmentos de Peptídeos , Rutênio , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/química , Rutênio/química , Rutênio/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/metabolismo , Humanos , Agregados Proteicos/efeitos dos fármacos , Estrutura Molecular , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo
4.
Angew Chem Int Ed Engl ; 63(31): e202406669, 2024 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-38842919

RESUMO

The high-resolution X-ray structures of the model protein lysozyme in the presence of the potential drug [VIVO(acetylacetonato)2] from crystals grown in 1.1 M NaCl, 0.1 M sodium acetate at pH 4.0 reveal the binding to the protein of different and unexpected mixed-valence cage-like polyoxidovanadates (POVs): [V15O36(OH2)]5-, which non-covalently interacts with the lysozyme surface, [V15O33(OH2)]+ and [V20O51(OH2)]n- (this latter based on an unusual {V18O43} cage) which covalently bind the protein. EPR spectroscopy confirms the partial oxidation of VIV to VV and the formation of mixed-valence species. The results indicate that the interaction with proteins can stabilize the structure of unexpected - both for dimension and architecture - POVs, not observed in aqueous solution.


Assuntos
Muramidase , Vanadatos , Muramidase/química , Muramidase/metabolismo , Vanadatos/química , Modelos Moleculares , Cristalografia por Raios X
5.
Inorg Chem ; 62(2): 670-674, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36597851

RESUMO

The paddlewheel [Ru2Cl(O2CCH3)4] complex was previously reported to react with the model protein hen egg white lysozyme (HEWL), forming adducts with two diruthenium moieties bound to Asp101 and Asp119 side chains upon the release of one acetate. To study the effect of the equatorial ligands on the reactivity with proteins of diruthenium compounds, X-ray structures of the adducts formed when HEWL reacts with [Ru2Cl(D-p-FPhF)(O2CCH3)3] [D-p-FPhF = N,N'-bis(4-fluorophenyl)formamidinate] under different conditions were solved. [Ru2Cl(D-p-FPhF)(O2CCH3)3] is bonded through their equatorial positions to the Asp side chains. Protein binding occurs cis or trans to D-p-FPhF. Lys or Arg side chains or even main-chain carbonyl groups can coordinate to the diruthenium core at the axial site. Data help to understand the reactivity of paddlewheel diruthenium complexes with proteins, providing useful information for the design of new artificial diruthenium-containing metalloenzymes with potential applications in the fields of catalysis, biomedicine, and biotechnology.


Assuntos
Ligantes , Ligação Proteica
6.
Inorg Chem ; 62(19): 7515-7524, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37144589

RESUMO

Due to their unique coordination structure, dirhodium paddlewheel complexes are of interest in several research fields, like medicinal chemistry, catalysis, etc. Previously, these complexes were conjugated to proteins and peptides for developing artificial metalloenzymes as homogeneous catalysts. Fixation of dirhodium complexes into protein crystals is interesting to develop heterogeneous catalysts. Porous solvent channels present in protein crystals can benefit the activity by increasing the probability of substrate collisions at the catalytic Rh binding sites. Toward this goal, the present work describes the use of bovine pancreatic ribonuclease (RNase A) crystals with a pore size of 4 nm (P3221 space group) for fixing [Rh2(OAc)4] and developing a heterogeneous catalyst to perform reactions in an aqueous medium. The structure of the [Rh2(OAc)4]/RNase A adduct was investigated by X-ray crystallography: the metal complex structure remains unperturbed upon protein binding. Using a number of crystal structures, metal complex accumulation over time, within the RNase A crystals, and structures at variable temperatures were evaluated. We also report the large-scale preparation of microcrystals (∼10-20 µm) of the [Rh2(OAc)4]/RNase A adduct and cross-linking reaction with glutaraldehyde. The catalytic olefin cyclopropanation reaction and self-coupling of diazo compounds by these cross-linked [Rh2(OAc)4]/RNase A crystals were demonstrated. The results of this work reveal that these systems can be used as heterogeneous catalysts to promote reactions in aqueous solution. Overall, our findings demonstrate that the dirhodium paddlewheel complexes can be fixed in porous biomolecule crystals, like those of RNase A, to prepare biohybrid materials for catalytic applications.


Assuntos
Complexos de Coordenação , Compostos Organometálicos , Animais , Bovinos , Ribonuclease Pancreático/química , Ribonucleases , Compostos Organometálicos/química , Catálise
7.
Inorg Chem ; 62(2): 675-678, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36602395

RESUMO

The molecular mechanism of how human serum transferrin (hTF) recognizes cisplatin at the atomic level is still unclear. Here, we report the molecular structure of the adduct formed upon the reaction of hTF with cisplatin. Pt binds the side chain of Met256 (at the N-lobe), without altering the protein overall conformation.


Assuntos
Cisplatino , Transferrina , Humanos , Cisplatino/metabolismo , Transferrina/química , Ferro/química , Conformação Proteica , Ligação Proteica , Receptores da Transferrina/química , Receptores da Transferrina/metabolismo
8.
Inorg Chem ; 62(21): 8407-8417, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37195003

RESUMO

Vanadium complexes (VCs) are promising agents for the treatment, among others, of diabetes and cancer. The development of vanadium-based drugs is mainly limited by a scarce knowledge of the active species in the target organs, which is often determined by the interaction of VCs with biological macromolecules like proteins. Here, we have studied the binding of [VIVO(empp)2] (where Hempp is 1-methyl-2-ethyl-3-hydroxy-4(1H)-pyridinone), an antidiabetic and anticancer VC, with the model protein hen egg white lysozyme (HEWL) by electrospray ionization-mass spectrometry (ESI-MS), electron paramagnetic resonance (EPR), and X-ray crystallography. ESI-MS and EPR techniques reveal that, in aqueous solution, both the species [VIVO(empp)2] and [VIVO(empp)(H2O)]+, derived from the first one upon the loss of a empp(-) ligand, interact with HEWL. Crystallographic data, collected under different experimental conditions, show covalent binding of [VIVO(empp)(H2O)]+ to the side chain of Asp48, and noncovalent binding of cis-[VIVO(empp)2(H2O)], [VIVO(empp)(H2O)]+, [VIVO(empp)(H2O)2]+, and of an unusual trinuclear oxidovanadium(V) complex, [VV3O6(empp)3(H2O)], with accessible sites on the protein surface. The possibility of covalent and noncovalent binding with different strength and of interaction with various sites favor the formation of adducts with the multiple binding of vanadium moieties, allowing the transport in blood and cellular fluids of more than one metal-containing species with a possible amplification of the biological effects.


Assuntos
Proteínas , Vanádio , Vanádio/química , Piridonas/química , Água , Espectrometria de Massas por Ionização por Electrospray
9.
Inorg Chem ; 62(26): 10470-10480, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37338927

RESUMO

Neurodegenerative diseases are often associated with an uncontrolled amyloid aggregation. Hence, many studies are oriented to discover new compounds that are able to modulate self-recognition mechanisms of proteins involved in the development of these pathologies. Herein, three metal-complexes able to release carbon monoxide (CORMs) were analyzed for their ability to affect the self-aggregation of the amyloidogenic fragment of nucleophosmin 1, corresponding to the second helix of the three-helix bundle located in the C-terminal domain of the protein, i.e., NPM1264-277, peptide. These complexes were two cymantrenes coordinated to the nucleobase adenine (Cym-Ade) and to the antibiotic ciprofloxacin (Cym-Cipro) and a Re(I)-compound containing 1,10-phenanthroline and 3-CCCH2NHCOCH2CH2-6-bromo-chromone as ligands (Re-Flavo). Thioflavin T (ThT) assay, UV-vis absorption and fluorescence spectroscopies, scanning electron microscopy (SEM), and electrospray ionization mass spectrometry (ESI-MS) indicated that the three compounds have different effects on the peptide aggregation. Cym-Ade and Cym-Cipro act as aggregating agents. Cym-Ade induces the formation of NPM1264-277 fibers longer and stiffer than that formed by NPM1264-277 alone; irradiation of complexes speeds the formation of fibers that are more flexible and thicker than those found without irradiation. Cym-Cipro induces the formation of longer fibers, although slightly thinner in diameter. Conversely, Re-Flavo acts as an antiaggregating agent. Overall, these results indicate that metal-based CORMs with diverse structural features can have a different effect on the formation of amyloid fibers. A proper choice of ligands attached to metal can allow the development of metal-based drugs with potential application as antiamyloidogenic agents.


Assuntos
Complexos de Coordenação , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Ligantes , Metais , Peptídeos , Proteínas Nucleares , Ciprofloxacina , Amiloide , Peptídeos beta-Amiloides
10.
Int J Mol Sci ; 24(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36768690

RESUMO

This study describes new platinum(II) cationic five-coordinate complexes (1-R,R') of the formula [PtR(NHC)(dmphen)(ethene)]CF3SO3 (dmphen = 2,9-dimethyl-1,10-phenanthroline), containing in their axial positions an alkyl group R (methyl or octyl) and an imidazole-based NHC-carbene ligand with a substituent R' of variable length (methyl or octyl) on one nitrogen atom. The Pt-carbene bond is stable both in DMSO and in aqueous solvents. In DMSO, a gradual substitution of dmphen and ethene is observed, with the formation of a square planar solvated species. Octanol/water partitioning studies have revealed the order of hydrophobicity of the complexes (1-Oct,Me > 1-Oct,Oct > 1-Me,Oct > 1-Me,Me). Their biological activity was investigated against two pairs of cancer and non-cancer cell lines. The tested drugs were internalized in cancer cells and able to activate the apoptotic pathway. The reactivity of 1-Me,Me with DNA and protein model systems was also studied using UV-vis absorption spectroscopy, fluorescence, and X-ray crystallography. The compound binds DNA and interacts in various ways with the model protein lysozyme. Remarkably, structural data revealed that the complex can bind lysozyme via non-covalent interactions, retaining its five-coordinate geometry.


Assuntos
Antineoplásicos , Muramidase , Antineoplásicos/farmacologia , Antineoplásicos/química , Cristalografia por Raios X , Dimetil Sulfóxido , DNA , Interações Hidrofóbicas e Hidrofílicas , Compostos de Platina/química , Compostos de Platina/farmacologia
11.
Angew Chem Int Ed Engl ; 62(50): e202310655, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37768728

RESUMO

High-resolution crystal structures of lysozyme in the presence of the potential drug VIV O(acetylacetonato)2 under two different experimental conditions have been solved. The crystallographic study reveals the loss of the ligands, the oxidation of VIV to VV and the subsequent formation of adducts of the protein with two different polyoxidovanadates: [V4 O12 ]4- , which interacts with lysozyme non-covalently, and the unprecedented [V20 O54 (NO3 )]n- , which is covalenty bound to the side chain of an aspartate residue of symmetry related molecules.


Assuntos
Muramidase , Proteínas , Muramidase/química , Oxirredução , Vanádio/química , Ligantes
12.
Inorg Chem ; 61(22): 8402-8405, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35609175

RESUMO

X-ray diffraction data demonstrate that the adduct formed upon the reaction of dirhodium(II,II) tetraacetate with RNase A reacts with imidazole, leading to the formation of an unexpected product with the imidazole that binds the dirhodium center at an equatorial site rather than an axial site. The origin of this result has been dissected using quantum-chemical calculations.


Assuntos
Compostos Organometálicos , Cristalografia por Raios X , Imidazóis , Modelos Moleculares , Compostos Organometálicos/química , Ribonuclease Pancreático
13.
Inorg Chem ; 61(41): 16458-16467, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36205235

RESUMO

The interaction with proteins of metal-based drugs plays a crucial role in their transport, mechanism, and activity. For an active MLn complex, where L is the organic carrier, various binding modes (covalent and non-covalent, single or multiple) may occur and several metal moieties (M, ML, ML2, etc.) may interact with proteins. In this study, we have evaluated the interaction of [VIVO(malt)2] (bis(maltolato)oxidovanadium(IV) or BMOV, where malt = maltolato, i.e., the common name for 3-hydroxy-2-methyl-4H-pyran-4-onato) with the model protein hen egg white lysozyme (HEWL) by electrospray ionization mass spectrometry, electron paramagnetic resonance, and X-ray crystallography. The multiple binding of different V-containing isomers and enantiomers to different sites of HEWL is observed. The data indicate both non-covalent binding of cis-[VO(malt)2(H2O)] and [VO(malt)(H2O)3]+ and covalent binding of [VO(H2O)3-4]2+ and cis-[VO(malt)2] and other V-containing fragments to the side chains of Glu35, Asp48, Asn65, Asp87, and Asp119 and to the C-terminal carboxylate. Our results suggest that the multiple and variable interactions of potential VIVOL2 drugs with proteins can help to better understand their solution chemistry and contribute to define the molecular basis of the mechanism of action of these intriguing molecules.


Assuntos
Muramidase , Proteínas , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Muramidase/química , Piranos
14.
Inorg Chem ; 61(8): 3540-3552, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35171608

RESUMO

Neurodegenerative diseases are often caused by uncontrolled amyloid aggregation. Hence, many drug discovery processes are oriented to evaluate new compounds that are able to modulate self-recognition mechanisms. Herein, two related glycoconjugate pentacoordinate Pt(II) complexes were analyzed in their capacity to affect the self-aggregation processes of two amyloidogenic fragments, Aß21-40 and Aß25-35, of the C-terminal region of the ß-amyloid (Aß) peptide, the major component of Alzheimer's disease (AD) neuronal plaques. The most water-soluble complex, 1Ptdep, is able to bind both fragments and to deeply influence the morphology of peptide aggregates. Thioflavin T (ThT) binding assays, electrospray ionization mass spectrometry (ESI-MS), and ultraviolet-visible (UV-vis) absorption spectroscopy indicated that 1Ptdep shows different kinetics and mechanisms of inhibition toward the two sequences and demonstrated that the peptide aggregation inhibition is associated with a direct coordinative bond of the compound metal center to the peptides. These data support the in vitro ability of pentacoordinate Pt(II) complexes to inhibit the formation of amyloid aggregates and pave the way for the application of this class of compounds as potential neurotherapeutics.


Assuntos
Peptídeos beta-Amiloides
15.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35408863

RESUMO

The research interest in the field of inorganic medicinal chemistry had a large increase after the serendipitous discovery of the cytotoxic activity of cisplatin by Rosenberg at the end of 1960s [...].


Assuntos
Antineoplásicos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Cisplatino/farmacologia
16.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36430642

RESUMO

Auranofin (AF), a gold(I) compound that is currently used for the treatment of rheumatoid arthritis and is in clinical trials for its promising anticancer activity, was encapsulated within the human H-chain and the horse spleen ferritin nanocages using the alkaline disassembly/reassembly protocol. The aim of the work was to highlight possible differences in their drug loading capacity and efficacy. The drug-loaded ferritins were characterized via UV-vis absorption spectroscopy and inductively coupled plasma-atomic emission spectroscopy to assess AF encapsulation and to define the exact amount of gold atoms trapped in the Ft cavity. The crystal structures allowed us to define the nature of AF interaction with both ferritins and to identify the gold binding sites. Moreover, the biological characterization let us to obtain preliminary information on the cytotoxic effect of AF when bound to the human H-chain.


Assuntos
Auranofina , Ferritinas , Sistemas de Liberação de Fármacos por Nanopartículas , Animais , Humanos , Antineoplásicos/química , Auranofina/química , Auranofina/farmacologia , Sítios de Ligação , Ferritinas/química , Ferritinas/metabolismo , Ouro/química , Cavalos , Sistemas de Liberação de Fármacos por Nanopartículas/química , Sistemas de Liberação de Fármacos por Nanopartículas/farmacologia
17.
Inorg Chem ; 60(24): 19098-19109, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34847328

RESUMO

The structure, stability, and enzymatic activity of the adduct formed upon the reaction of the V-picolinato (pic) complex [VIVO(pic)2(H2O)], with an octahedral geometry and the water ligand in cis to the V═O group, with the bovine pancreatic ribonuclease (RNase A) were studied. While electrospray ionization-mass spectrometry, circular dichroism, and ultraviolet-visible absorption spectroscopy substantiate the interaction between the metal moiety and RNase A, electron paramagnetic resonance (EPR) allows us to determine that a carboxylate group, stemming from Asp or Glu residues, and imidazole nitrogen from His residues are involved in the V binding at acidic and physiological pH, respectively. Crystallographic data demonstrate that the VIVO(pic)2 moiety coordinates the side chain of Glu111 of RNase A, by substituting the equatorial water molecule at acidic pH. Computational methods confirm that Glu111 is the most affine residue and interacts favorably with the OC-6-23-Δ enantiomer establishing an extended network of hydrogen bonds and van der Waals stabilizations. By increasing the pH around neutrality, with the deprotonation of histidine side chains, the binding of the V complex to His105 and His119 could occur, with that to His105 which should be preferred when compared to that to the catalytically important His119. The binding of the V compound affects the enzymatic activity of RNase A, but it does not alter its overall structure and stability.


Assuntos
Ribonuclease Pancreático
18.
Int J Mol Sci ; 22(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540880

RESUMO

The structures of the adducts formed upon reaction of the cytotoxic paddlewheel dirhodium complex [Rh2(µ-O2CCH3)4] with the model protein hen egg white lysozyme (HEWL) under different experimental conditions are reported. Results indicate that [Rh2(µ-O2CCH3)4] extensively reacts with HEWL:it in part breaks down, at variance with what happens in reactions with other proteins. A Rh center coordinates the side chains of Arg14 and His15. Dimeric Rh-Rh units with Rh-Rh distances between 2.3 and 2.5 Å are bound to the side chains of Asp18, Asp101, Asn93, and Lys96, while a dirhodium unit with a Rh-Rh distance of 3.2-3.4 Å binds the C-terminal carboxylate and the side chain of Lys13 at the interface between two symmetry-related molecules. An additional monometallic fragment binds the side chain of Lys33. These data, which are supported by replicated structural determinations, shed light on the reactivity of dirhodium tetracarboxylates with proteins, providing useful information for the design of new Rh-containing biomaterials with an array of potential applications in the field of catalysis or of medicinal chemistry and valuable insight into the mechanism of action of these potential anticancer agents.


Assuntos
Muramidase/química , Compostos Organometálicos/química , Animais , Antineoplásicos/química , Arginina/química , Sítios de Ligação , Cristalização , Cristalografia por Raios X , Histidina/química , Ligantes , Modelos Moleculares , Estrutura Molecular , Muramidase/metabolismo , Compostos Organometálicos/metabolismo , Ligação Proteica , Conformação Proteica , Solubilidade , Soluções
19.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638887

RESUMO

Three novel platinum(II) complexes bearing N-heterocyclic ligands, i.e., Pt2c, Pt-IV and Pt-VIII, were previously prepared and characterized. They manifested promising in vitro anticancer properties associated with non-conventional modes of action. To gain further mechanistic insight, we have explored here the reactions of these Pt compounds with a few model proteins, i.e., hen egg white lysozyme (HEWL), bovine pancreatic ribonuclease (RNase A), horse heart cytochrome c (Cyt-c) and human serum albumin (HSA), primarily through ESI MS analysis. Characteristic and variegate patterns of reactivity were highlighted in the various cases that appear to depend both on the nature of the Pt complex and of the interacting protein. The protein-bound Pt fragments were identified. In the case of the complex Pt2c, the adducts formed upon reaction with HEWL and RNase A were further characterized by solving the respective crystal structures: this allowed us to determine the exact location of the various Pt binding sites. The implications of the obtained results are discussed in relation to the possible mechanisms of action of these innovative anticancer Pt complexes.


Assuntos
Complexos de Coordenação/química , Citocromos c/química , Muramidase/química , Platina/química , Ribonuclease Pancreático/química , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Sítios de Ligação , Bovinos , Complexos de Coordenação/metabolismo , Cristalografia por Raios X , Citocromos c/metabolismo , Cavalos , Humanos , Ligantes , Modelos Moleculares , Muramidase/metabolismo , Platina/metabolismo , Ligação Proteica , Domínios Proteicos , Ribonuclease Pancreático/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos
20.
Int J Mol Sci ; 22(4)2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668605

RESUMO

Arsenoplatin-1 (AP-1), the prototype of a novel class of metallodrugs containing a PtAs(OH)2 core, was encapsulated within the apoferritin (AFt) nanocage. UV-Vis absorption spectroscopy and inductively coupled plasma-atomic emission spectroscopy measurements confirmed metallodrug encapsulation and allowed us to determine the average amount of AP-1 trapped inside the cage. The X-ray structure of AP-1-encapsulated AFt was solved at 1.50 Å. Diffraction data revealed that an AP-1 fragment coordinates the side chain of a His residue. The biological activity of AP-1-loaded AFt was comparatively tested on a few representative cancer and non-cancer cell lines. Even though the presence of the cage reduces the overall cytotoxicity of AP-1, it improves its selectivity towards cancer cells.


Assuntos
Antineoplásicos , Trióxido de Arsênio/análogos & derivados , Cisplatino/análogos & derivados , Citotoxinas , Ferritinas , Neoplasias/tratamento farmacológico , Compostos de Platina , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Trióxido de Arsênio/química , Trióxido de Arsênio/farmacologia , Células 3T3 BALB , Cisplatino/química , Cisplatino/farmacologia , Citotoxinas/química , Citotoxinas/farmacologia , Ferritinas/química , Ferritinas/farmacologia , Humanos , Camundongos , Estrutura Molecular , Neoplasias/metabolismo , Neoplasias/patologia , Compostos de Platina/química , Compostos de Platina/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA