Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(50): e2311528120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38060562

RESUMO

Regular spatial patterns of vegetation are a common sight in drylands. Their formation is a population-level response to water stress that increases water availability for the few via partial plant mortality. At the individual level, plants can also adapt to water stress by changing their phenotype. Phenotypic plasticity of individual plants and spatial patterning of plant populations have extensively been studied independently, but the likely interplay between the two robust mechanisms has remained unexplored. In this paper, we incorporate phenotypic plasticity into a multi-level theory of vegetation pattern formation and use a fascinating ecological phenomenon, the Namibian "fairy circles," to demonstrate the need for such a theory. We show that phenotypic changes in the root structure of plants, coupled with pattern-forming feedback within soil layers, can resolve two puzzles that the current theory fails to explain: observations of multi-scale patterns and the absence of theoretically predicted large-scale stripe and spot patterns along the rainfall gradient. Importantly, we find that multi-level responses to stress unveil a wide variety of more effective stress-relaxation pathways, compared to single-level responses, implying a previously underestimated resilience of dryland ecosystems.


Assuntos
Desidratação , Ecossistema , Plantas/metabolismo , Retroalimentação , Adaptação Fisiológica , Solo/química
2.
PLoS Comput Biol ; 17(9): e1009427, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34587157

RESUMO

Humans play major roles in shaping and transforming the ecology of Earth. Unlike natural drivers of ecosystem change, which are erratic and unpredictable, human intervention in ecosystems generally involves planning and management, but often results in detrimental outcomes. Using model studies and aerial-image analysis, we argue that the design of a successful human intervention form calls for the identification of the self-organization modes that drive ecosystem change, and for studying their dynamics. We demonstrate this approach with two examples: grazing management in drought-prone ecosystems, and rehabilitation of degraded vegetation by water harvesting. We show that grazing can increase the resilience to droughts, rather than imposing an additional stress, if managed in a spatially non-uniform manner, and that fragmental restoration along contour bunds is more resilient than the common practice of continuous restoration in vegetation stripes. We conclude by discussing the need for additional studies of self-organization modes and their dynamics.


Assuntos
Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/estatística & dados numéricos , Ecologia/organização & administração , Ecologia/estatística & dados numéricos , Ecossistema , Criação de Animais Domésticos , Animais , Biomassa , Mudança Climática , Biologia Computacional , Simulação por Computador , Conservação dos Recursos Hídricos/métodos , Conservação dos Recursos Hídricos/estatística & dados numéricos , Secas , Pradaria , Herbivoria , Humanos , Tecnologia de Sensoriamento Remoto/estatística & dados numéricos , Processos Estocásticos
3.
Chaos ; 30(2): 023120, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32113250

RESUMO

Frequency locking in forced oscillatory systems typically organizes in "V"-shaped domains in the plane spanned by the forcing frequency and amplitude, the so-called Arnol'd tongues. Here, we show that if the medium is spatially extended and monotonically heterogeneous, e.g., through spatially dependent natural frequency, the resonance tongues can also display "U" and "W" shapes; we refer to the latter as an "inverse camel" shape. We study the generic forced complex Ginzburg-Landau equation for damped oscillations under parametric forcing and, using linear stability analysis and numerical simulations, uncover the mechanisms that lead to these distinct resonance shapes. Additionally, we study the effects of discretization by exploring frequency locking of oscillator chains. Since we study a normal-form equation, the results are model-independent near the onset of oscillations and, therefore, applicable to inherently heterogeneous systems in general, such as the cochlea. The results are also applicable to controlling technological performances in various contexts, such as arrays of mechanical resonators, catalytic surface reactions, and nonlinear optics.

4.
Phys Rev Lett ; 122(4): 048101, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30768298

RESUMO

Degradation processes in living systems often take place gradually by front propagation. An important context of such processes is loss of biological productivity in drylands or desertification. Using a dryland-vegetation model, we analyze the stability and dynamics of desertification fronts, identify linear and nonlinear front instabilities, and highlight the significance of these instabilities in inducing self-recovery. The results are based on the derivation and analysis of a universal amplitude equation for pattern-forming living systems for which nonuniform instabilities cannot emerge from the nonviable (zero) state. The results may therefore be applicable to other contexts of animate matter where degradation processes occur by front propagation.


Assuntos
Conservação dos Recursos Naturais , Modelos Teóricos , Ecossistema , Modelos Lineares , Dinâmica não Linear
5.
Proc Natl Acad Sci U S A ; 113(13): 3551-6, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26976567

RESUMO

Vegetation gap patterns in arid grasslands, such as the "fairy circles" of Namibia, are one of nature's greatest mysteries and subject to a lively debate on their origin. They are characterized by small-scale hexagonal ordering of circular bare-soil gaps that persists uniformly in the landscape scale to form a homogeneous distribution. Pattern-formation theory predicts that such highly ordered gap patterns should be found also in other water-limited systems across the globe, even if the mechanisms of their formation are different. Here we report that so far unknown fairy circles with the same spatial structure exist 10,000 km away from Namibia in the remote outback of Australia. Combining fieldwork, remote sensing, spatial pattern analysis, and process-based mathematical modeling, we demonstrate that these patterns emerge by self-organization, with no correlation with termite activity; the driving mechanism is a positive biomass-water feedback associated with water runoff and biomass-dependent infiltration rates. The remarkable match between the patterns of Australian and Namibian fairy circles and model results indicate that both patterns emerge from a nonuniform stationary instability, supporting a central universality principle of pattern-formation theory. Applied to the context of dryland vegetation, this principle predicts that different systems that go through the same instability type will show similar vegetation patterns even if the feedback mechanisms and resulting soil-water distributions are different, as we indeed found by comparing the Australian and the Namibian fairy-circle ecosystems. These results suggest that biomass-water feedbacks and resultant vegetation gap patterns are likely more common in remote drylands than is currently known.


Assuntos
Pradaria , Modelos Biológicos , Desenvolvimento Vegetal , Poaceae/crescimento & desenvolvimento , Biomassa , Retroalimentação Fisiológica , Namíbia , Chuva , Austrália Ocidental
6.
Proc Natl Acad Sci U S A ; 112(40): 12327-31, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26362787

RESUMO

Large responses of ecosystems to small changes in the conditions--regime shifts--are of great interest and importance. In spatially extended ecosystems, these shifts may be local or global. Using empirical data and mathematical modeling, we investigated the dynamics of the Namibian fairy circle ecosystem as a case study of regime shifts in a pattern-forming ecosystem. Our results provide new support, based on the dynamics of the ecosystem, for the view of fairy circles as a self-organization phenomenon driven by water-vegetation interactions. The study further suggests that fairy circle birth and death processes correspond to spatially confined transitions between alternative stable states. Cascades of such transitions, possible in various pattern-forming systems, result in gradual rather than abrupt regime shifts.


Assuntos
Mudança Climática , Clima , Ecossistema , Plantas/metabolismo , Algoritmos , Biomassa , Modelos Teóricos , Plantas/classificação , Dinâmica Populacional , Chuva , Fatores de Tempo , Água/metabolismo
7.
Chaos ; 28(3): 033609, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29604648

RESUMO

Many ecosystems show both self-organized spatial patterns and multistability of possible states. The combination of these two phenomena in different forms has a significant impact on the behavior of ecosystems in changing environments. One notable case is connected to tristability of two distinct uniform states together with patterned states, which has recently been found in model studies of dryland ecosystems. Using a simple model, we determine the extent of tristability in parameter space, explore its effects on the system dynamics, and consider its implications for state transitions or regime shifts. We analyze the bifurcation structure of model solutions that describe uniform states, periodic patterns, and hybrid states between the former two. We map out the parameter space where these states exist, and note how the different states interact with each other. We further focus on two special implications with ecological significance, breakdown of the snaking range and complex fronts. We find that the organization of the hybrid states within a homoclinic snaking structure breaks down as it meets a Maxwell point where simple fronts are stationary. We also discover a new series of complex fronts between the uniform states, each with its own velocity. We conclude with a brief discussion of the significance of these findings for the dynamics of regime shifts and their potential control.


Assuntos
Ecossistema , Modelos Biológicos , Periodicidade
8.
J Theor Biol ; 418: 27-35, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28115204

RESUMO

Understanding how desertification takes place in different ecosystems is an important step in attempting to forecast and prevent such transitions. Dryland ecosystems often exhibit patchy vegetation, which has been shown to be an important factor on the possible regime shifts that occur in arid regions in several model studies. In particular, both gradual shifts that occur by front propagation, and abrupt shifts where patches of vegetation vanish at once, are a possibility in dryland ecosystems due to their emergent spatial heterogeneity. However, recent theoretical work has suggested that the final step of desertification - the transition from spotted vegetation to bare soil - occurs only as an abrupt shift, but the generality of this result, and its underlying origin, remain unclear. We investigate two models that detail the dynamics of dryland vegetation using a markedly different functional structure, and find that in both models the final step of desertification can only be abrupt. Using a careful numerical analysis, we show that this behavior is associated with the disappearance of confined spot-pattern domains as stationary states, and identify the mathematical origin of this behavior. Our findings show that a gradual desertification to bare soil due to a front propagation process can not occur in these and similar models, and opens the question of whether these dynamics can take place in nature.


Assuntos
Ecossistema , Modelos Biológicos , Desenvolvimento Vegetal/fisiologia , Plantas
9.
Chaos ; 25(6): 064307, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26117118

RESUMO

We study resonant spatially periodic solutions of the Lengyel-Epstein model modified to describe the chlorine dioxide-iodine-malonic acid reaction under spatially periodic illumination. Using multiple-scale analysis and numerical simulations, we obtain the stability ranges of 2:1 resonant solutions, i.e., solutions with wavenumbers that are exactly half of the forcing wavenumber. We show that the width of resonant wavenumber response is a non-monotonic function of the forcing strength, and diminishes to zero at sufficiently strong forcing. We further show that strong forcing may result in a π/2 phase shift of the resonant solutions, and argue that the nonequilibrium Ising-Bloch front bifurcation can be reversed. We attribute these behaviors to an inherent property of forcing by periodic illumination, namely, the increase of the mean spatial illumination as the forcing amplitude is increased.


Assuntos
Compostos Clorados/química , Iodo/química , Malonatos/química , Modelos Químicos , Óxidos/química
10.
Phys Rev Lett ; 112(7): 078701, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24579640

RESUMO

We use the context of dryland vegetation to study a general problem of complex pattern-forming systems: multiple pattern-forming instabilities that are driven by distinct mechanisms but share the same spectral properties. We find that the co-occurrence of two Turing instabilities when the driving mechanisms counteract each other in some region of the parameter space results in the growth of a single mode rather than two interacting modes. The interplay between the two mechanisms compensates for the simpler dynamics of a single mode by inducing a wider variety of patterns, which implies higher biodiversity in dryland ecosystems.

11.
Phys Chem Chem Phys ; 16(47): 26137-43, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25360810

RESUMO

We use the CDIMA chemical reaction and the Lengyel-Epstein model of this reaction to study resonant responses of a pattern-forming system to time-independent spatial periodic forcing. We focus on the 2 : 1 resonance, where the wavenumber of a one-dimensional periodic forcing is about twice the wavenumber of the natural stripe pattern that the unforced system tends to form. Within this resonance, we study transverse fronts that shift the phase of resonant stripe patterns by π. We identify phase fronts that shift the phase discontinuously, and pairs of phase fronts that shift the phase continuously, clockwise and anti-clockwise. We further identify a front bifurcation that destabilizes the discontinuous front and leads to a pair of continuous fronts. This bifurcation is the spatial counterpart of the nonequilibrium Ising-Bloch (NIB) bifurcation in temporally forced oscillatory systems. The spatial NIB bifurcation that we find occurs as the forcing strength is increased, unlike earlier studies of the NIB bifurcation. Furthermore, the bifurcation is subcritical, implying a range of forcing strength where both discontinuous Ising fronts and continuous Bloch fronts are stable. Finally, we find that both Ising fronts and Bloch fronts can form discrete families of bound pairs, and we relate arrays of these front pairs to extended rectangular and oblique patterns.


Assuntos
Compostos Clorados/química , Iodo/química , Malonatos/química , Óxidos/química
13.
Ecol Lett ; 16(2): 127-39, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23157578

RESUMO

In this article, we develop a unifying framework for the understanding of spatial vegetation patterns in heterogeneous landscapes. While much recent research has focused on self-organised vegetation the prevailing view is still that biological patchiness is mostly due to top-down control by the physical landscape template, disturbances or predators. We suggest that vegetation patchiness in real landscapes is controlled both by the physical template and by self-organisation simultaneously, and introduce a conceptual model for the relative roles of the two mechanisms. The model considers four factors that control whether vegetation patchiness is emerged or imposed: soil patch size, plant size, resource input and resource availability. The last three factors determine the plant-patch size, and the plant-to-soil patch size ratio determines the impact of self-organisation, which becomes important when this ratio is sufficiently small. A field study and numerical simulations of a mathematical model support the conceptual model and give further insight by providing examples of self-organised and template-controlled vegetation patterns co-occurring in the same landscape. We conclude that real landscapes are generally mixtures of template-induced and self-organised patchiness. Patchiness variability increases due to source-sink resource relations, and decreases for species of larger patch sizes.


Assuntos
Ecossistema , Modelos Biológicos , Plantas , Processamento de Imagem Assistida por Computador , Israel , Modelos Teóricos , Poa/fisiologia , Rosaceae/fisiologia , Solo
14.
J Theor Biol ; 335: 198-204, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-23820039

RESUMO

Using a spatially explicit mathematical model for water-limited vegetation we show that spatial instabilities of uniform states can lead to species coexistence under conditions where uniformly distributed species competitively exclude one another. Coexistence is made possible when water-rich patches formed by a pattern forming species provide habitats for a highly dispersive species that is a better competitor in uniform settings.


Assuntos
Biodiversidade , Modelos Biológicos , Fenômenos Fisiológicos Vegetais , Plantas
15.
PNAS Nexus ; 2(1): pgac294, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36733292

RESUMO

Vegetation pattern formation is a widespread phenomenon in resource-limited environments, but the driving mechanisms are largely unconfirmed empirically. Combining results of field studies and mathematical modeling, empirical evidence for a generic pattern-formation mechanism is demonstrated with the clonal shrub Guilandina bonduc L. (hereafter Guilandina) on the Brazilian island of Trindade. The mechanism is associated with water conduction by laterally spread roots and root augmentation as the shoot grows-a crucial element in the positive feedback loop that drives spatial patterning. Assuming precipitation-dependent root-shoot relations, the model accounts for the major vegetation landscapes on Trindade Island, substantiating lateral root augmentation as the driving mechanism of Guilandina patterning. Guilandina expands into surrounding communities dominated by the Trindade endemic, Cyperus atlanticus Hemsl. (hereafter Cyperus). It appears to do so by decreasing the water potential in soils below Cyperus through its dense lateral roots, leaving behind a patchy Guilandina-only landscape. We use this system to highlight a novel form of invasion, likely to apply to many other systems where the invasive species is pattern-forming. Depending on the level of water stress, the invasion can take two distinct forms: (i) a complete invasion at low stress that culminates in a patchy Guilandina-only landscape through a spot-replication process, and (ii) an incomplete invasion at high stress that begins but does not spread, forming isolated Guilandina spots of fixed size, surrounded by bare-soil halos, in an otherwise uniform Cyperus grassland. Thus, drier climates may act selectively on pattern-forming invasive species, imposing incomplete invasion and reducing the negative effects on native species.

16.
Phys Rev Lett ; 109(3): 034102, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22861855

RESUMO

Spatial periodic forcing of pattern-forming systems is an important, but lightly studied, method of controlling patterns. It can be used to control the amplitude and wave number of one-dimensional periodic patterns, to stabilize unstable patterns, and to induce them below instability onset. We show that, although in one spatial dimension the forcing acts to reinforce the patterns, in two dimensions it acts to destabilize or displace them by inducing two-dimensional rectangular and oblique patterns.


Assuntos
Modelos Teóricos , Oscilometria/métodos , Periodicidade
17.
Nat Ecol Evol ; 6(8): 1064-1076, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35879539

RESUMO

Responses of terrestrial ecosystems to climate change have been explored in many regions worldwide. While continued drying and warming may alter process rates and deteriorate the state and performance of ecosystems, it could also lead to more fundamental changes in the mechanisms governing ecosystem functioning. Here we argue that climate change will induce unprecedented shifts in these mechanisms in historically wetter climatic zones, towards mechanisms currently prevalent in dry regions, which we refer to as 'dryland mechanisms'. We discuss 12 dryland mechanisms affecting multiple processes of ecosystem functioning, including vegetation development, water flow, energy budget, carbon and nutrient cycling, plant production and organic matter decomposition. We then examine mostly rare examples of the operation of these mechanisms in non-dryland regions where they have been considered irrelevant at present. Current and future climate trends could force microclimatic conditions across thresholds and lead to the emergence of dryland mechanisms and their increasing control over ecosystem functioning in many biomes on Earth.


Assuntos
Mudança Climática , Ecossistema , Carbono , Plantas
18.
J Theor Biol ; 273(1): 138-46, 2011 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-21187102

RESUMO

A common patch form in dryland landscapes is the vegetation ring. Vegetation patch formation has recently been attributed to self-organization processes that act to increase the availability of water to vegetation patches under conditions of water scarcity. The view of ring formation as a water-limited process, however, has remained largely unexplored. Using laboratory experiments and model studies we identify two distinct mechanisms of ring formation. The first mechanism pertains to conditions of high infiltration contrast between vegetated and bare soil, under which overland water flow is intercepted at the patch periphery. The decreasing amount of water that the patch core receives as the patch expands, leads to central dieback and ring formation. The second mechanism pertains to plants with large lateral root zones, and involves central dieback and ring formation due to increasing water uptake by the newly recruited individuals at the patch periphery. In general the two mechanisms act in concert, but the relative importance of each mechanism depends on environmental conditions. We found that strong seasonal rainfall variability favors ring formation by the overland-flow mechanism, while a uniform rainfall regime favors ring formation by the water-uptake mechanism. Our results explain the formation of rings by fast-growing species with confined root zones in a dry-Mediterranean climate, such as Poa bulbosa. They also explain the formation of rings by slowly growing species with highly extended root zones, such as Larrea tridentata (Creosotebush).


Assuntos
Modelos Biológicos , Desenvolvimento Vegetal , Água , Biomassa , Poaceae/crescimento & desenvolvimento , Chuva , Solo
19.
Phys Life Rev ; 38: 1-24, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34334324

RESUMO

Vegetation patterning in water-limited and other resource-limited ecosystems highlights spatial self-organization processes as potentially key drivers of community assembly. These processes provide insight into predictable landscape-level relationships between organisms and their abiotic environment in the form of regular and irregular patterns of biota and resources. However, two aspects have largely been overlooked; the roles played by plant - soil-biota feedbacks and allelopathy in spatial self-organization, and their potential contribution, along with plant-resource feedbacks, to community assembly through spatial self-organization. Here, we expand the drivers of spatial self-organization from a focus on plant-resource feedbacks to include plant - soil-biota feedbacks and allelopathy, and integrate concepts of nonlinear physics and community ecology to generate a new hypothesis. According to this hypothesis, below-ground processes can affect community assemblages through two types of spatial self-organization, global and local. The former occurs simultaneously across whole ecosystems, leading to self-organized patterns of biota, allelochemicals and resources, and niche partitioning. The latter occurs locally in ecotones, and determines ecotone structure and motion, invasion dynamics, and species coexistence. Studies of the two forms of spatial self-organization are important for understanding the organization of plant communities in drier climates which are likely to involve spatial patterning or re-patterning. Such studies are also important for developing new practices of ecosystem management, based on local manipulations at ecotones, to slow invasion dynamics or induce transitions from transitive to intransitive networks of interspecific interactions which increase species diversity.


Assuntos
Ecossistema , Solo , Ecologia , Retroalimentação , Plantas
20.
Elife ; 102021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34570698

RESUMO

Temporal shifts to drier climates impose environmental stresses on plant communities that may result in community reassembly and threatened ecosystem services, but also may trigger self-organization in spatial patterns of biota and resources, which act to relax these stresses. The complex relationships between these counteracting processes - community reassembly and spatial self-organization - have hardly been studied. Using a spatio-temporal model of dryland plant communities and a trait-based approach, we study the response of such communities to increasing water-deficit stress. We first show that spatial patterning acts to reverse shifts from fast-growing species to stress-tolerant species, as well as to reverse functional-diversity loss. We then show that spatial self-organization buffers the impact of further stress on community structure. Finally, we identify multistability ranges of uniform and patterned community states and use them to propose forms of non-uniform ecosystem management that integrate the need for provisioning ecosystem services with the need to preserve community structure.


Assuntos
Biodiversidade , Clima , Plantas/classificação , Ecossistema , Meio Ambiente , Modelos Teóricos , Desenvolvimento Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA