RESUMO
Endothelial integrity relies on a mechanical crosstalk between intercellular and cell-matrix interactions. This crosstalk is compromised in hemorrhagic vascular lesions of patients carrying loss-of-function mutations in cerebral cavernous malformation (CCM) genes. RhoA/ROCK-dependent cytoskeletal remodeling is central to the disease, as it causes unbalanced cell adhesion towards increased cell-extracellular matrix adhesions and destabilized cell-cell junctions. This study reveals that CCM proteins directly orchestrate ROCK1 and ROCK2 complementary roles on the mechanics of the endothelium. CCM proteins act as a scaffold, promoting ROCK2 interactions with VE-cadherin and limiting ROCK1 kinase activity. Loss of CCM1 (also known as KRIT1) produces excessive ROCK1-dependent actin stress fibers and destabilizes intercellular junctions. Silencing of ROCK1 but not ROCK2 restores the adhesive and mechanical homeostasis of CCM1 and CCM2-depleted endothelial monolayers, and rescues the cardiovascular defects of ccm1 mutant zebrafish embryos. Conversely, knocking down Rock2 but not Rock1 in wild-type zebrafish embryos generates defects reminiscent of the ccm1 mutant phenotypes. Our study uncovers the role of the CCM1-CCM2 complex in controlling ROCK1 and ROCK2 to preserve endothelial integrity and drive heart morphogenesis. Moreover, it solely identifies the ROCK1 isoform as a potential therapeutic target for the CCM disease.
Assuntos
Proteínas de Transporte/metabolismo , Células Endoteliais/metabolismo , Proteína KRIT1/metabolismo , Quinases Associadas a rho/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Western Blotting , Caderinas/genética , Caderinas/metabolismo , Proteínas de Transporte/genética , Bovinos , Células Endoteliais/citologia , Citometria de Fluxo , Imunofluorescência , Células Endoteliais da Veia Umbilical Humana , Humanos , Imunoprecipitação , Proteína KRIT1/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Peixe-Zebra , Quinases Associadas a rho/genéticaRESUMO
We describe here the evaluation of the cytotoxic efficacy of two platinum (II) complexes bearing an N-heterocyclic carbene (NHC) ligand, a pyridine ligand and bromide or iodide ligands on a panel of human metastatic cutaneous melanoma cell lines representing different genetic subsets including BRAF-inhibitor-resistant cell lines, namely A375, SK-MEL-28, MeWo, HMCB, A375-R, SK-MEL-5-R and 501MEL-R. Cisplatin and dacarbazine were also studied for comparison purposes. Remarkably, the iodine-labelled Pt-NHC complex strongly inhibited proliferation of all tested melanoma cells after 1-h exposure, likely due to its rapid uptake by melanoma cells. The mechanism of this inhibitory activity involves the formation of DNA double-strand breaks and apoptosis. Considering the intrinsic chemoresistance of metastatic melanoma cells of current systemic treatments, these findings are promising and could give research opportunities in the future to improve the prognosis of patients suffering from unresectable metastatic melanoma that are not eligible or that do not respond to the most effective drugs available to date, namely BRAF inhibitors and the anti-PD-1 monoclonal antibody (mAb).
Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Melanoma/tratamento farmacológico , Compostos Organoplatínicos/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacocinética , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos/genética , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Humanos , Melanoma/patologia , Metano/análogos & derivados , Metano/química , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacocinética , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/patologia , Proteína bcl-X/metabolismo , Melanoma Maligno CutâneoRESUMO
The structure of tumors can be recapitulated as an elastic frame formed by the connected cytoskeletons of the cells invaded by interstitial and intracellular fluids. The low-frequency mechanics of this poroelastic system, dictated by the elastic skeleton only, control tumor growth, penetration of therapeutic agents, and invasiveness. The high-frequency mechanical properties containing the additional contribution of the internal fluids have also been posited to participate in tumor progression and drug resistance, but they remain largely unexplored. Here we use Brillouin light scattering to produce label-free images of tumor microtissues based on the high-frequency viscoelastic modulus as a contrast mechanism. In this regime, we demonstrate that the modulus discriminates between tissues with altered tumorigenic properties. Our micrometric maps also reveal that the modulus is heterogeneously altered across the tissue by drug therapy, revealing a lag of efficacy in the core of the tumor. Exploiting high-frequency poromechanics should advance present theories based on viscoelasticity and lead to integrated descriptions of tumor response to drugs.
Assuntos
Modelos Biológicos , Neoplasias/patologia , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Citoesqueleto/química , Citoesqueleto/patologia , Elasticidade , Células HCT116 , Humanos , Neoplasias/química , Espalhamento de Radiação , Esferoides Celulares/química , Esferoides Celulares/patologiaRESUMO
G-rich oligonucleotide, AS1411, has been shown to interact with nucleolin and to inhibit cancer cell proliferation and tumor growth. This antiproliferative action is increased when AS1411 is conjugated to different types of nanoparticles. However, the molecular mechanisms are not known. In this work, we show in several cell lines that optimized AS1411-conjugated gold nanoparticles (GNS-AS1411) inhibit nucleolin expression at the RNA and protein levels. We observed an alteration of the nucleolar structure with a decrease of ribosomal RNA accumulation comparable to what is observed upon nucleolin knock down. However, the expression of genes involved in cell cycle and the cell cycle blockage by GNS-AS1411 are not regulated in the same way as that in cells where nucleolin has been knocked down. These data suggest that the anti-proliferative activity of GNS-AS1411 is not the only consequence of nucleolin targeting and down-regulation.
Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Ouro , Nanopartículas Metálicas/química , Oligodesoxirribonucleotídeos , Fosfoproteínas/biossíntese , RNA Ribossômico/biossíntese , Proteínas de Ligação a RNA/biossíntese , Aptâmeros de Nucleotídeos , Linhagem Celular Tumoral , Ouro/química , Ouro/farmacologia , Humanos , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/farmacologia , NucleolinaRESUMO
Neuroblastoma (NB) is the most common pediatric tumor and is currently treated by several types of therapies including chemotherapies, such as bortezomib treatment. However, resistance to bortezomib is frequently observed by mechanisms that remain to be deciphered. Bortezomib treatment leads to caspase activation and aggresome formation. Using models of patients-derived NB cell lines with different levels of sensitivity to bortezomib, we show that the activated form of caspase 3 accumulates within aggresomes of NB resistant cells leading to an impairment of bortezomib-induced apoptosis and increased cell survival. Our findings unveil a new mechanism of resistance to chemotherapy based on an altered subcellular distribution of the executioner caspase 3. This mechanism could explain the resistance developed in NB patients treated with bortezomib, emphasizing the potential of drugs targeting aggresomes.
Assuntos
Antineoplásicos , Neuroblastoma , Criança , Humanos , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Caspase 3/farmacologia , Linhagem Celular Tumoral , Apoptose , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêuticoRESUMO
Many studies highlight the potential link between the chronic degenerative Alzheimer's disease and the infection by the herpes simplex virus type-1 (HSV-1). However, the molecular mechanisms making possible this HSV-1-dependent process remain to be understood. Using neuronal cells expressing the wild type form of amyloid precursor protein (APP) infected by HSV-1, we characterized a representative cellular model of the early stage of the sporadic form of the disease and unraveled a molecular mechanism sustaining this HSV-1- Alzheimer's disease interplay. Here, we show that HSV-1 induces caspase-dependent production of the 42 amino-acid long amyloid peptide (Aß42) oligomers followed by their accumulation in neuronal cells. Aß42 oligomers and activated caspase 3 (casp3A) concentrate into intracytoplasmic structures observed in Alzheimer's disease neuronal cells called aggresomes. This casp3A accumulation in aggresomes during HSV-1 infection limits the execution of apoptosis until its term, similarly to an abortosis-like event occurring in Alzheimer's disease neuronal cells patients. Indeed, this particular HSV-1 driven cellular context, representative of early stages of the disease, sustains a failed apoptosis mechanism that could explain the chronic amplification of Aß42 production characteristic of Alzheimer's disease patients. Finally, we show that combination of flurbiprofen, a non-steroidal anti-inflammatory drug (NSAID), with caspase inhibitor reduced drastically HSV-1-induced Aß42 oligomers production. This provided mechanistic insights supporting the conclusion of clinical trials showing that NSAIDs reduced Alzheimer's disease incidence in early stage of the disease. Therefore, from our study we propose that caspase-dependent production of Aß42 oligomers together with the abortosis-like event represents a vicious circle in early Alzheimer's disease stages leading to a chronic amplification of Aß42 oligomers that contributes to the establishment of degenerative disorder like Alzheimer's disease in patients infected by HSV-1. Interestingly this process could be targeted by an association of NSAID with caspase inhibitors.
Assuntos
Doença de Alzheimer , Herpesvirus Humano 1 , Humanos , Doença de Alzheimer/metabolismo , Herpesvirus Humano 1/metabolismo , Neurônios/metabolismo , Anti-Inflamatórios não Esteroides , Caspases/metabolismo , Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismoRESUMO
Growing evidence exposes translation and its translational machinery as key players in establishing and maintaining physiological and pathological biological processes. Examining translation may not only provide new biological insight but also identify novel innovative therapeutic targets in several fields of biology, including that of epithelial-to-mesenchymal transition (EMT). EMT is currently considered as a dynamic and reversible transdifferentiation process sustaining the transition from an epithelial to mesenchymal phenotype, known to be mainly driven by transcriptional reprogramming. However, it seems that the characterization of EMT plasticity is challenging, relying exclusively on transcriptomic and epigenetic approaches. Indeed, heterogeneity in EMT programs was reported to depend on the biological context. Here, by reviewing the involvement of translational control, translational machinery and ribosome biogenesis characterizing the different types of EMT, from embryonic and adult physiological to pathological contexts, we discuss the added value of integrating translational control and its machinery to depict the heterogeneity and dynamics of EMT programs.
Assuntos
Transição Epitelial-Mesenquimal , Biossíntese de Proteínas , Transdiferenciação Celular , Transição Epitelial-Mesenquimal/genética , Humanos , Ribossomos/genética , TranscriptomaRESUMO
Mechanisms of drug-tolerance remain poorly understood and have been linked to genomic but also to non-genomic processes. 5-fluorouracil (5-FU), the most widely used chemotherapy in oncology is associated with resistance. While prescribed as an inhibitor of DNA replication, 5-FU alters all RNA pathways. Here, we show that 5-FU treatment leads to the production of fluorinated ribosomes exhibiting altered translational activities. 5-FU is incorporated into ribosomal RNAs of mature ribosomes in cancer cell lines, colorectal xenografts, and human tumors. Fluorinated ribosomes appear to be functional, yet, they display a selective translational activity towards mRNAs depending on the nature of their 5'-untranslated region. As a result, we find that sustained translation of IGF-1R mRNA, which encodes one of the most potent cell survival effectors, promotes the survival of 5-FU-treated colorectal cancer cells. Altogether, our results demonstrate that "man-made" fluorinated ribosomes favor the drug-tolerant cellular phenotype by promoting translation of survival genes.
Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , DNA de Neoplasias/genética , Tolerância a Medicamentos/genética , Fluoruracila/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Receptor IGF Tipo 1/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Replicação do DNA , DNA de Neoplasias/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Células HCT116 , Halogenação , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Receptor IGF Tipo 1/agonistas , Receptor IGF Tipo 1/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/genética , Ribossomos/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
We previously showed that N6L, a pseudopeptide that targets nucleolin, impairs pancreatic ductal adenocarcinoma (PDAC) growth and normalizes tumor vessels in animal models. In this study, we analyzed the translatome of PDAC cells treated with N6L to identify the pathways that were either repressed or activated. We observed a strong decrease in global protein synthesis. However, about 6% of the mRNAs were enriched in the polysomes. We identified a 5'TOP motif in many of these mRNAs and demonstrated that a chimeric RNA bearing a 5'TOP motif was up-regulated by N6L. We demonstrated that N6L activates the mTOR pathway, which is required for the translation of these mRNAs. An inhibitory synergistic effect in PDAC cell lines, including patient-derived xenografts and tumor-derived organoids, was observed when N6L was combined with mTOR inhibitors. In conclusion, N6L reduces pancreatic cells proliferation, which then undergoes translational reprogramming through activation of the mTOR pathway. N6L and mTOR inhibitors act synergistically to inhibit the proliferation of PDAC and human PDX cell lines. This combotherapy of N6L and mTOR inhibitors could constitute a promising alternative to treat pancreatic cancer.
RESUMO
5-Fluorouracil (5-FU) is a chemotherapeutic drug widely used to treat patients with solid tumours, such as colorectal and pancreatic cancers. Colorectal cancer (CRC) is the second leading cause of cancer-related death and half of patients experience tumour recurrence. Used for over 60 years, 5-FU was long thought to exert its cytotoxic effects by altering DNA metabolism. However, 5-FU mode of action is more complex than previously anticipated since 5-FU is an extrinsic source of RNA modifications through its ability to be incorporated into most classes of RNA. In particular, a recent report highlighted that, by its integration into the most abundant RNA, namely ribosomal RNA (rRNA), 5-FU creates fluorinated active ribosomes and induces translational reprogramming. Here, we review the historical knowledge of 5-FU mode of action and discuss progress in the field of 5-FU-induced RNA modifications. The case of rRNA, the essential component of ribosome and translational activity, and the plasticity of which was recently associated with cancer, is highlighted. We propose that translational reprogramming, induced by 5-FU integration in ribosomes, contributes to 5-FU-driven cell plasticity and ultimately to relapse.
RESUMO
Keratin 8 (K8) expressed at the surface of cancer cells, referred as externalized K8 (eK8), has been observed in a variety of carcinoma cell lines. K8 has been previously reported to be expressed in poorly differentiated head and neck squamous cell carcinoma (HNSCC); however, its role during the invasive phase of upper aerodigestive tract tumorigenesis is unknown. Cohorts of HNSCC tumors for protein and mRNA expression and panel of cell lines were used for investigation. K8 was found to be externalized in a majority of HNSCC cell lines. Among the two main K8 protein isoforms only the 54â¯kDa was found to be present at the plasma membrane of HNSCC cells. The plasminogen-induced invasion of HNSCC cells was inhibited by the anti-eK8 D-A10 antagonist monoclonal antibody. Overexpression of K8 mRNA and protein were both correlated with tumor aggressive features and poor outcome. The effect of eK8 neutralization on invasion, its presence exclusively in cancer cells and the association of K8 expression with aggressive features and poor clinical outcome in HNSCC unravel eK8 as key player in invasion and a promising therapeutic target in HNSCC.
RESUMO
Many studies have focused on understanding the regulation and functions of aberrant protein synthesis in colorectal cancer (CRC), leaving the ribosome, its main effector, relatively underappreciated in CRC. The production of functional ribosomes is initiated in the nucleolus, requires coordinated ribosomal RNA (rRNA) processing and ribosomal protein (RP) assembly, and is frequently hyperactivated to support the needs in protein synthesis essential to withstand unremitting cancer cell growth. This elevated ribosome production in cancer cells includes a strong alteration of ribosome biogenesis homeostasis that represents one of the hallmarks of cancer cells. None of the ribosome production steps escape this cancer-specific dysregulation. This review summarizes the early and late steps of ribosome biogenesis dysregulations described in CRC cell lines, intestinal organoids, CRC stem cells and mouse models, and their possible clinical implications. We highlight how this cancer-related ribosome biogenesis, both at quantitative and qualitative levels, can lead to the synthesis of ribosomes favoring the translation of mRNAs encoding hyperproliferative and survival factors. We also discuss whether cancer-related ribosome biogenesis is a mere consequence of cancer progression or is a causal factor in CRC, and how altered ribosome biogenesis pathways can represent effective targets to kill CRC cells. The association between exacerbated CRC cell growth and alteration of specific steps of ribosome biogenesis is highlighted as a key driver of tumorigenesis, providing promising perspectives for the implementation of predictive biomarkers and the development of new therapeutic drugs.
Assuntos
Neoplasias Colorretais/metabolismo , Biogênese de Organelas , Ribossomos/metabolismo , Animais , Neoplasias Colorretais/genética , Genes Supressores de Tumor , Humanos , Modelos Biológicos , RNA Ribossômico/biossínteseRESUMO
High dietary iron intake is a risk factor for the development of colorectal cancer. However, how iron subsequently impacts the proliferation of colorectal cancer cells remains unclear. This study determined the expression of six iron regulatory genes in twenty-one human colorectal cancer (CRC) biopsies and matched normal colonic tissue. The results show that only hepcidin and ferritin heavy chain expression were increased in CRC biopsies as compared to matched normal tissues. Four established human CRC cell lines, HT-29, HCT-116, SW-620 and SW-480 were subsequently examined for their growth in response to increasing concentrations of iron, and iron depletion. Real time cell growth assay showed a significant inhibitory effect of acute iron loading in HCT-116 cells (IC50 = 258.25 µM at 72 h), and no significant effects in other cell types. However, ten week treatment with iron significantly reduced HT-29 and SW-620 cell growth, whereas no effect was seen in HCT-116 and SW-480 cells. Intracellular labile iron depletion induced the complete growth arrest and detachment of all of the CRC cell types except for the SW-620 cell line which was not affected in its growth. Treatment of starved CRC cells with hepcidin, the major regulator of iron metabolism, induced a significant stimulation of HT-29 cell growth but did not affect the growth of the other cell types. Collectively these results show that iron is central to CRC cell growth in a manner that is not identical between acute and chronic loading, and that is specific to the CRC cell type.
Assuntos
Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Hepcidinas/farmacologia , Ferro da Dieta/farmacologia , Ferro/farmacologia , Linhagem Celular Tumoral , Células HCT116 , Células HT29 , HumanosRESUMO
While the effects of growth hormone (GH) on longitudinal growth are well established, the observation that GH contributes to neoplastic progression is more recent. Accumulating literature implicates GH-mediated signal transduction in the development and progression of a wide range malignancies including breast cancer. Recently autocrine human GH been demonstrated to be an orthotopically expressed oncogene for the human mammary gland. This review will highlight recent evidence linking GH and mammary carcinoma and discuss GH-antagonism as a potential therapeutic approach for treatment of breast cancer.
Assuntos
Neoplasias da Mama/metabolismo , Hormônio do Crescimento/metabolismo , Animais , Comunicação Autócrina , Neoplasias da Mama/tratamento farmacológico , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Hormônio do Crescimento/antagonistas & inibidores , Humanos , Fatores de RiscoRESUMO
Cytokines and growth factors are responsible for inducing the expression of suppressor of cytokine signaling (SOCS) and cytokine-inducible SH2 containing (CIS) proteins. SOCS and CIS proteins are negative regulators of the JAK/STAT pathway, and exert their physiological effects by suppressing the tyrosine kinase activity of cytokine receptors and inhibiting STAT activation. Growth hormone (GH) is considered as a true cytokine and its local production directly contributes to tumor progression. In an initial study, we have found that CIS expression is increased in human breast cancer in proliferative areas corresponding to high level of GH synthesis. The results of the study presented here confirm the presence of a negative feed back loop in MCF7 cells stably transfected with the hGH gene (MCF-hGH). Real-time PCR analysis showed that gene expression levels of CIS were increased by 80% in MCF-hGH cells as compared to control cell line. Similarly, we have found that the level of CIS gene expression is increased by 50% in primary cultures of human breast cancer, reinforcing the pathophysiological impact of CIS. We previously demonstrated that increasing levels of transfected CIS resulted in strong activation of the mitogen-activated protein (MAP) kinase pathway. Thus, CIS protein has been hypothesized as acting like an activator of the MAPK pathway and an inhibitor of the differentiated cells functions mediated through the JAK/STAT pathway. In the present study, we demonstrate the role of CIS protein in tumor progression in particular its positive effects on cell proliferation and colony formation.
Assuntos
Neoplasias da Mama/metabolismo , Hormônio do Crescimento Humano/farmacologia , Janus Quinase 1/antagonistas & inibidores , Fator de Transcrição STAT3/antagonistas & inibidores , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Comunicação Autócrina , Neoplasias da Mama/patologia , Humanos , Janus Quinase 1/metabolismo , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Tumorais CultivadasRESUMO
Human growth hormone (hGH) is expressed by mammary epithelial cells and associated with proliferative disorders of the human breast. Our goal is to characterize the paracrine effects of hGH on morphological and functional changes of mammary carcinoma cells using MCF7 cells stably transfected with the hGH gene (MCFhGH). To identify the molecular actors involved in autocrine hGH-induced cell proliferation, we have used a protein chip technology using a commercial antibody microarray. The results enabled us to qualitatively characterize MCF-hGH cell's proteome from a panel of 500 proteins. Statistical analysis of variations in protein levels between the two cell lines did not highlight any significant differences. Thus, we concluded that variations in MCF-hGH proteome are more likely to reside in the activation status rather than drastic variations in the expression level of the 500 spotted proteins. To test this hypothesis, we confronted the protein chip result to the study of the regulation of the transcriptional factor Pax (Paired-box)-5 whose expression was not found to be altered on the protein chip. Surprisingly, we found that autocrine production of hGH in MCF7 cells was associated with a strong nuclear accumulation of Pax5 in a JAK2-dependent manner associated with an increase in Pax5-DNA binding activity. Our work indicates that subtle changes mediated by Pax5 are responsible for autocrine hGH-induced cell proliferation.
Assuntos
Comunicação Autócrina/fisiologia , Neoplasias da Mama/metabolismo , Hormônio do Crescimento Humano/farmacologia , Comunicação Parácrina/fisiologia , Análise Serial de Proteínas , Proteoma/análise , Proteômica , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , DNA/genética , DNA/metabolismo , Feminino , Humanos , Janus Quinase 2/metabolismo , Fator de Transcrição PAX5/metabolismo , Células Tumorais CultivadasRESUMO
Accumulating evidence supports the remarkable presence at the membrane surface of cancer cells of proteins, which are normally expressed in the intracellular compartment. Although these proteins, referred to as externalized proteins, represent a highly promising source of accessible and druggable targets for cancer therapy, the mechanisms via which they impact cancer biology remain largely unexplored. The aim of this study was to expose an externalized form of cytokeratin 8 (eK8) as a key player of colorectal tumorigenesis and characterize its mode of action. To achieve this, we generated a unique antagonist monoclonal antibody (D-A10 MAb) targeting an eight-amino-acid-long domain of eK8, which enabled us to ascertain the pro-tumoral activity of eK8 in both KRAS-mutant and wild-type colorectal cancers (CRC). We showed that this pro-tumoral activity involves a bidirectional eK8-dependent control of caspase-mediated apoptosis in vivo and of the plasminogen-induced invasion process in cellulo. Furthermore, we demonstrated that eK8 is anchored at the plasma membrane supporting this dual function. We, therefore, identified eK8 as an innovative therapeutic target in CRC and provided a unique MAb targeting eK8 that displays anti-neoplastic activities that could be useful to treat CRC, including those harboring KRAS mutations.
RESUMO
The human growth hormone (hGH) gene is expressed in the normal human mammary epithelial cell and its expression increases concomitant with the acquisition of proliferative lesions. Herein we demonstrate that autocrine production of hGH in human mammary carcinoma cells dramatically enhances anchorage-independent growth in a Janus kinase 2-dependent manner. Forced expression of the hGH gene in immortalized human mammary epithelial cells increased proliferation, decreased apoptosis, altered the cellular morphology and resulted in oncogenic transformation. Autocrine hGH was therefore sufficient to support anchorage-independent growth of immortalized human mammary epithelial cells and tumor formation in vivo. Moreover, autocrine hGH disrupted normal mammary acinar architecture with luminal filling and deregulated proliferation in three-dimensional epithelial cell culture. Autocrine hGH utilized homeobox A1 to govern the transcriptional program required for autocrine hGH-stimulated oncogenic transformation of human mammary epithelial cells, including transcriptional up-regulation of c-Myc, cyclin D1, and Bcl-2. Forced expression of a single orthotopically expressed wild-type gene is therefore sufficient for oncogenic transformation of the immortalized human mammary epithelial cell.
Assuntos
Mama/citologia , Mama/patologia , Transformação Celular Neoplásica , Células Epiteliais/citologia , Hormônio do Crescimento Humano/fisiologia , Neoplasias da Mama , Divisão Celular , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Ciclina D1/genética , Primers do DNA , Células Epiteliais/patologia , Feminino , Genes myc , Vetores Genéticos , Hormônio do Crescimento Humano/genética , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica , TransfecçãoRESUMO
The growth hormone (GH) and insulin-like growth factor-1 (IGF1) axis is the key regulator of longitudinal growth, promoting postnatal bone and muscle growth. The available data suggest that GH expression by tumour cells is associated with the aetiology and progression of various cancers such as endometrial, breast, liver, prostate, and colon cancer. Accordingly there has been increased interest in targeting GH-mediated signal transduction in a therapeutic setting. Because GH has endocrine, autocrine, and paracrine actions, therapeutic strategies will need to take into account systemic and local functions. Activation of related hormone receptors and crosstalk with other signalling pathways are also key considerations.