RESUMO
Netrin-1 is upregulated in cancers as a protumoural mechanism1. Here we describe netrin-1 upregulation in a majority of human endometrial carcinomas (ECs) and demonstrate that netrin-1 blockade, using an anti-netrin-1 antibody (NP137), is effective in reduction of tumour progression in an EC mouse model. We next examined the efficacy of NP137, as a first-in-class single agent, in a Phase I trial comprising 14 patients with advanced EC. As best response we observed 8 stable disease (8 out of 14, 57.1%) and 1 objective response as RECIST v.1.1 (partial response, 1 out of 14 (7.1%), 51.16% reduction in target lesions at 6 weeks and up to 54.65% reduction during the following 6 months). To evaluate the NP137 mechanism of action, mouse tumour gene profiling was performed, and we observed, in addition to cell death induction, that NP137 inhibited epithelial-to-mesenchymal transition (EMT). By performing bulk RNA sequencing (RNA-seq), spatial transcriptomics and single-cell RNA-seq on paired pre- and on-treatment biopsies from patients with EC from the NP137 trial, we noted a net reduction in tumour EMT. This was associated with changes in immune infiltrate and increased interactions between cancer cells and the tumour microenvironment. Given the importance of EMT in resistance to current standards of care2, we show in the EC mouse model that a combination of NP137 with carboplatin-paclitaxel outperformed carboplatin-paclitaxel alone. Our results identify netrin-1 blockade as a clinical strategy triggering both tumour debulking and EMT inhibition, thus potentially alleviating resistance to standard treatments.
Assuntos
Neoplasias do Endométrio , Transição Epitelial-Mesenquimal , Netrina-1 , Animais , Feminino , Humanos , Camundongos , Biópsia , Carboplatina/administração & dosagem , Carboplatina/farmacologia , Carboplatina/uso terapêutico , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/imunologia , Neoplasias do Endométrio/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Perfilação da Expressão Gênica , Netrina-1/antagonistas & inibidores , Paclitaxel/administração & dosagem , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , RNA-Seq , Análise da Expressão Gênica de Célula Única , Microambiente Tumoral/efeitos dos fármacosRESUMO
BACKGROUND: Cervical cancer's lymphatic spread primarily begins from the sentinel lymph nodes (SLNs), underlining their pivotal role in disease metastasis. However, these nodes' immune gene expression profiles and immunoregulation mechanisms have yet to be explored. METHODS: Our study aimed to elucidate the immune cell populations and their roles in the immune gene expression profile of negative SLNs compared with positive SLNs and non-SLNs using Nanostring RNA seq analysis. We performed a principal component analysis on the log2 normalized expression of 685 endogenous genes in the nCounter PanCancer Immune Profiling Panel, followed by an assessment of the differential expression of genes and immune cell type abundance. RESULTS: We found significant variations in gene expression among the groups, with negative SLNs displaying overexpression of genes related to tumor-infiltrating immune cells, specifically innate cell populations. They also demonstrated the upregulation of genes involved in antigen presentation and T-cell priming. In contrast, positive SLNs were enriched in regulatory networks, suggesting their potential role in immune evasion. A comparison of negative SLNs and non-SLNs revealed increased innate and adaptive immune cell types, underscoring the ongoing T cell response to tumor antigens. CONCLUSION: Our findings underscore a specific immunogenetic phenotype profile in negative SLNs, emphasizing their crucial role in the initial anticancer response, immunosurveillance, and the propagation of immune tolerance from the primary cervical tumor. These results highlight the potential of SLNs as a novel target for immunotherapy strategies and underscore the importance of new imaging methods for accurately identifying SLN status without removal. Future investigations are needed to understand further the immunological interplay within SLNs and their influence on cervical cancer progression.
Assuntos
Linfonodo Sentinela , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Linfonodo Sentinela/patologia , Linfonodo Sentinela/imunologia , Imunogenética/métodos , Pessoa de Meia-Idade , Metástase Linfática , Biópsia de Linfonodo Sentinela/métodosRESUMO
Drug resistance and cancer relapse represent significant therapeutic challenges after chemotherapy or immunotherapy, and a major limiting factor for long-term cancer survival. Netrin-1 was initially identified as a neuronal navigation cue but has more recently emerged as an interesting target for cancer therapy, which is currently clinically investigated. We show here that netrin-1 is an independent prognostic marker for clinical progression of breast and ovary cancers. Cancer stem cells (CSCs)/Tumor initiating cells (TICs) are hypothesized to be involved in clinical progression, tumor relapse and resistance. We found a significant correlation between netrin-1 expression and cancer stem cell (CSC) markers levels. We also show in different mice models of resistance to chemotherapies that netrin-1 interference using a therapeutic netrin-1 blocking antibody alleviates resistance to chemotherapy and triggers an efficient delay in tumor relapse and this effect is associated with CSCs loss. We also demonstrate that netrin-1 interference limits tumor resistance to immune checkpoint inhibitor and provide evidence linking this enhanced anti-tumor efficacy to a decreased recruitment of a subtype of myeloid-derived suppressor cells (MDSCs) called polymorphonuclear (PMN)-MDSCs. We have functionally demonstrated that these immune cells promote CSCs features and, consequently, resistance to anti-cancer treatments. Together, these data support the view of both a direct and indirect contribution of netrin-1 to cancer stemness and we propose that this may lead to therapeutic opportunities by combining conventional chemotherapies and immunotherapies with netrin-1 interfering drugs.
RESUMO
Gynecologic carcinosarcomas (CS) are biphasic neoplasms composed of carcinomatous (C) and sarcomatous (S) malignant components. Because of their rarity and histologic complexity, genetic and functional studies on CS are scarce and the mechanisms of initiation and development remain largely unknown. Whole-genome analysis of the C and S components reveals shared genomic alterations, thus emphasizing the clonal evolution of CS. Reconstructions of the evolutionary history of each tumor further reveal that C and S samples are composed of both ancestral cell populations and component-specific subclones, supporting a common origin followed by distinct evolutionary trajectories. However, while we do not find any recurrent genomic features associated with phenotypic divergence, transcriptomic and methylome analyses identify a common mechanism across the cohort, the epithelial-to-mesenchymal transition (EMT), suggesting a role for nongenetic factors in inflicting changes to cellular fate. Altogether, these data accredit the hypothesis that CS tumors are driven by both clonal evolution and transcriptomic reprogramming, essential for susceptibility to transdifferentiation upon encountering environmental cues, thus linking CS heterogeneity to genetic, transcriptomic, and epigenetic influences. Significance: We have provided a detailed characterization of the genomic landscape of CS and identified EMT as a common mechanism associated with phenotypic divergence, linking CS heterogeneity to genetic, transcriptomic, and epigenetic influences.
Assuntos
Carcinossarcoma , Neoplasias Ovarianas , Sarcoma , Humanos , Feminino , Carcinossarcoma/genética , Neoplasias Ovarianas/genéticaRESUMO
Microcystic stromal tumors (MCST), first described in 2009 by Irving et al., are rare ovarian neoplasms. The entity was introduced into the 2014 WHO classification of tumors of female reproductive organs in the group of sex cord-stromal tumors, which is rather heterogeneous. We studied three cases of ovarian tumor with the characteristic morphological features and immunohistochemical marker profiles of MCST. The three tumors showed micro, and macrocystic patterns with solid areas, and were composed of small round to spindle-shaped cells, without atypia. The tumors diffusely and strongly expressed CD10, FOXL2, and nuclear ß-catenin, but without immmunoreactivity for hormone receptors, calretinin, or inhibin. Genome analyses showed no somatic mutation of exon 1 of the FOXL2 gene and of exons 24 and 25 of DICER1 gene, the latter not having been reported previously. The patients are well, without evidence of tumor progression 1 to 10 years after diagnosis.The absence of FOXL2 and DICER1 gene mutation, along with strong FOXL2 immunoreactivity provides additional evidence to place MCST within pure gonadal stromal rather than sex cord ovarian tumors.