Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Mol Sci ; 21(14)2020 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-32707661

RESUMO

A poor socioeconomic environment and social adversity are fundamental determinants of human life span, well-being and health. Previous influenza pandemics showed that socioeconomic factors may determine both disease detection rates and overall outcomes, and preliminary data from the ongoing coronavirus disease (COVID-19) pandemic suggests that this is still true. Over the past years it has become clear that early-life adversity (ELA) plays a critical role biasing the immune system towards a pro-inflammatory and senescent phenotype many years later. Cytotoxic T-lymphocytes (CTL) appear to be particularly sensitive to the early life social environment. As we understand more about the immune response to SARS-CoV-2 it appears that a functional CTL (CD8+) response is required to clear the infection and COVID-19 severity is increased as the CD8+ response becomes somehow diminished or exhausted. This raises the hypothesis that the ELA-induced pro-inflammatory and senescent phenotype may play a role in determining the clinical course of COVID-19, and the convergence of ELA-induced senescence and COVID-19 induced exhaustion represents the worst-case scenario with the least effective T-cell response. If the correct data is collected, it may be possible to separate the early life elements that have made people particularly vulnerable to COVID-19 many years later. This will, naturally, then help us identify those that are most at risk from developing the severest forms of COVID-19. In order to do this, we need to recognize socioeconomic and early-life factors as genuine medically and clinically relevant data that urgently need to be collected. Finally, many biological samples have been collected in the ongoing studies. The mechanisms linking the early life environment with a defined later-life phenotype are starting to be elucidated, and perhaps hold the key to understanding inequalities and differences in the severity of COVID-19.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Suscetibilidade a Doenças/imunologia , Pneumonia Viral/imunologia , Classe Social , Estresse Psicológico/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Disparidades em Assistência à Saúde , Humanos , Pandemias , Pneumonia Viral/tratamento farmacológico , Fatores de Risco , SARS-CoV-2 , Fatores Socioeconômicos
2.
Sci Rep ; 14(1): 5898, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467724

RESUMO

Early-life adversity covers a range of physical, social and environmental stressors. Acute viral infections in early life are a major source of such adversity and have been associated with a broad spectrum of later-life effects outside the immune system or "off-target". These include an altered hypothalamus-pituitary-adrenal (HPA) axis and metabolic reactions. Here, we used a murine post-natal day 14 (PND 14) Influenza A (H1N1) infection model and applied a semi-holistic approach including phenotypic measurements, gene expression arrays and diffusion neuroimaging techniques to investigate HPA axis dysregulation, energy metabolism and brain connectivity. By PND 56 the H1N1 infection had been resolved, and there was no residual gene expression signature of immune cell infiltration into the liver, adrenal gland or brain tissues examined nor of immune-related signalling. A resolved early-life H1N1 infection had sex-specific effects. We observed retarded growth of males and altered pre-stress (baseline) blood glucose and corticosterone levels at PND42 after the infection was resolved. Cerebral MRI scans identified reduced connectivity in the cortex, midbrain and cerebellum that were accompanied by tissue-specific gene expression signatures. Gene set enrichment analysis confirmed that these were tissue-specific changes with few common pathways. Early-life infection independently affected each of the systems and this was independent of HPA axis or immune perturbations.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Feminino , Masculino , Animais , Camundongos , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/genética , Influenza Humana/metabolismo , Transcriptoma , Estresse Psicológico/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Corticosterona
3.
Nat Metab ; 4(5): 589-607, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35618940

RESUMO

Pyruvate dehydrogenase (PDH) is the gatekeeper enzyme of the tricarboxylic acid (TCA) cycle. Here we show that the deglycase DJ-1 (encoded by PARK7, a key familial Parkinson's disease gene) is a pacemaker regulating PDH activity in CD4+ regulatory T cells (Treg cells). DJ-1 binds to PDHE1-ß (PDHB), inhibiting phosphorylation of PDHE1-α (PDHA), thus promoting PDH activity and oxidative phosphorylation (OXPHOS). Park7 (Dj-1) deletion impairs Treg survival starting in young mice and reduces Treg homeostatic proliferation and cellularity only in aged mice. This leads to increased severity in aged mice during the remission of experimental autoimmune encephalomyelitis (EAE). Dj-1 deletion also compromises differentiation of inducible Treg cells especially in aged mice, and the impairment occurs via regulation of PDHB. These findings provide unforeseen insight into the complicated regulatory machinery of the PDH complex. As Treg homeostasis is dysregulated in many complex diseases, the DJ-1-PDHB axis represents a potential target to maintain or re-establish Treg homeostasis.


Assuntos
Oxirredutases , Doença de Parkinson , Proteína Desglicase DJ-1 , Piruvatos , Linfócitos T Reguladores , Envelhecimento , Animais , Homeostase , Camundongos , Oxirredutases/metabolismo , Doença de Parkinson/enzimologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteína Desglicase DJ-1/genética , Piruvatos/metabolismo , Linfócitos T Reguladores/metabolismo
4.
Exp Gerontol ; 150: 111377, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33905877

RESUMO

There are many 'faces' of early life adversity (ELA), such as childhood trauma, institutionalisation, abuse or exposure to environmental toxins. These have been implicated in the onset and severity of a wide range of chronic non-communicable diseases later in life. The later-life disease risk has a well-established immunological component. This raises the question as to whether accelerated immune-ageing mechanistically links early-life adversity to the lifelong health trajectory resulting in either 'poor' or 'healthy' ageing. Here we examine observational and mechanistic studies of ELA and inflammageing, highlighting common and distinct features in these two life stages. Many biological processes appear in common including reduction in telomere length, increased immunosenescence, metabolic distortions and chronic (viral) infections. We propose that ELA shapes the developing immune, endocrine and nervous system in a non-reversible way, creating a distinct phenotype with accelerated immunosenescence and systemic inflammation. We conclude that ELA might act as an accelerator for inflammageing and age-related diseases. Furthermore, we now have the tools and cohorts to be able to dissect the interaction between ELA and later life phenotype. This should, in the near future, allow us to identify the ecological and mechanistic processes that are involved in 'healthy' or accelerated immune-ageing.


Assuntos
Experiências Adversas da Infância , Envelhecimento , Suscetibilidade a Doenças , Humanos , Inflamação , Estresse Psicológico
5.
Nat Commun ; 11(1): 3033, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561830

RESUMO

Endogenous opioid peptides and prescription opioid drugs modulate pain, anxiety and stress by activating opioid receptors, currently classified into four subtypes. Here we demonstrate that ACKR3/CXCR7, hitherto known as an atypical scavenger receptor for chemokines, is a broad-spectrum scavenger of opioid peptides. Phylogenetically, ACKR3 is intermediate between chemokine and opioid receptors and is present in various brain regions together with classical opioid receptors. Functionally, ACKR3 is a scavenger receptor for a wide variety of opioid peptides, especially enkephalins and dynorphins, reducing their availability for the classical opioid receptors. ACKR3 is not modulated by prescription opioids, but we show that an ACKR3-selective subnanomolar competitor peptide, LIH383, can restrain ACKR3's negative regulatory function on opioid peptides in rat brain and potentiate their activity towards classical receptors, which may open alternative therapeutic avenues for opioid-related disorders. Altogether, our results reveal that ACKR3 is an atypical opioid receptor with cross-family ligand selectivity.


Assuntos
Peptídeos Opioides/química , Receptores CXCR/metabolismo , Analgésicos Opioides/química , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Sistema Nervoso Central/efeitos dos fármacos , Quimiocinas/metabolismo , Humanos , Ligantes , Sistema de Sinalização das MAP Quinases , Masculino , Fosforilação , Ratos , Ratos Wistar , Transdução de Sinais , Relação Estrutura-Atividade , beta-Arrestina 1/metabolismo
6.
Cell Metab ; 31(5): 920-936.e7, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32213345

RESUMO

Regulatory T cells (Tregs) maintain immune homeostasis and prevent autoimmunity. Serine stimulates glutathione (GSH) synthesis and feeds into the one-carbon metabolic network (1CMet) essential for effector T cell (Teff) responses. However, serine's functions, linkage to GSH, and role in stress responses in Tregs are unknown. Here, we show, using mice with Treg-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), that GSH loss in Tregs alters serine import and synthesis and that the integrity of this feedback loop is critical for Treg suppressive capacity. Although Gclc ablation does not impair Treg differentiation, mutant mice exhibit severe autoimmunity and enhanced anti-tumor responses. Gclc-deficient Tregs show increased serine metabolism, mTOR activation, and proliferation but downregulated FoxP3. Limitation of cellular serine in vitro and in vivo restores FoxP3 expression and suppressive capacity of Gclc-deficient Tregs. Our work reveals an unexpected role for GSH in restricting serine availability to preserve Treg functionality.


Assuntos
Glutationa/metabolismo , Serina/metabolismo , Linfócitos T Reguladores/metabolismo , Animais , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA