Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 11(6)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071555

RESUMO

Zinc oxide (ZnO) nanowires (NWs) are excellent candidates for the fabrication of energy harvesters, mechanical sensors, and piezotronic and piezophototronic devices. In order to integrate ZnO NWs into flexible devices, low-temperature fabrication methods are required that do not damage the plastic substrate. To date, the deposition of patterned ceramic thin films on flexible substrates is a difficult task to perform under vacuum-free conditions. Printing methods to deposit functional thin films offer many advantages, such as a low cost, low temperature, high throughput, and patterning at the same stage of deposition. Among printing techniques, gravure-based techniques are among the most attractive due to their ability to produce high quality results at high speeds and perform deposition over a large area. In this paper, we explore gravure printing as a cost-effective high-quality method to deposit thin ZnO seed layers on flexible polymer substrates. For the first time, we show that by following a chemical bath deposition (CBD) process, ZnO nanowires may be grown over gravure-printed ZnO nanoparticle seed layers. Piezo-response force microscopy (PFM) reveals the presence of a homogeneous distribution of Zn-polar domains in the NWs, and, by use of the data, the piezoelectric coefficient is estimated to be close to 4 pm/V. The overall results demonstrate that gravure printing is an appropriate method to deposit seed layers at a low temperature and to undertake the direct fabrication of flexible piezoelectric transducers that are based on ZnO nanowires. This work opens the possibility of manufacturing completely vacuum-free solution-based flexible piezoelectric devices.

2.
ACS Appl Mater Interfaces ; 12(26): 29583-29593, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32490666

RESUMO

ZnO thin films and nanostructures have received increasing interest in the field of piezoelectricity over the last decade, but their formation mechanisms on silicon when using pulsed-liquid injection metal-organic chemical vapor deposition (PLI-MOCVD) are still open to a large extent. Also, the effects of their morphology, dimensions, polarity, and electrical properties on their piezoelectric properties have not been completely decoupled yet. By only tuning the growth temperature from 400 to 750 °C while fixing the other growth conditions, the morphology transition of ZnO deposits on silicon from stacked thin films to nanowires through columnar thin films is shown. A detailed analysis of their formation mechanisms is further provided. The present transition is associated with strong enhancement of their crystallinity and growth texture along the c-axis together with a massive relaxation of the strain in nanowires. It is also related to a prevailed zinc polarity, for which its uniformity is strongly improved in nanowires. The nucleation of basal-plane stacking faults of I1-type in nanowires is also revealed and related to an emission line at about 3.326 eV in cathodoluminescence spectra, further exhibiting fairly low phonon coupling. Interestingly, the transition is additionally associated with a significant improvement of the piezoelectric amplitude, as determined by piezoresponse force microscopy measurements. The Zn-polar domains exhibit a larger piezoelectric amplitude than the O-polar domains, showing the importance of controlling the polarity in these deposits as a prerequisite to enhance the performances of piezoelectric devices. The present findings demonstrate the high potential in using the PLI-MOCVD system to form ZnO with different morphologies and polarity uniformity on silicon. They further reveal unambiguously the superiority of nanowires over thin films for piezoelectric devices.

3.
Nanomaterials (Basel) ; 10(9)2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942692

RESUMO

Field effect transistors (FETs) based on networks of randomly oriented Si nanowires (Si nanonets or Si NNs) were biomodified using Thrombin Binding Aptamer (TBA-15) probe with the final objective to sense thrombin by electrical detection. In this work, the impact of the biomodification on the electrical properties of the Si NN-FETs was studied. First, the results that were obtained for the optimization of the (3-Glycidyloxypropyl)trimethoxysilane (GOPS)-based biofunctionalization process by using UV radiation are reported. The biofunctionalized devices were analyzed by atomic force microscopy (AFM) and scanning transmission electron microscopy (STEM), proving that TBA-15 probes were properly grafted on the surface of the devices, and by means of epifluorescence microscopy it was possible to demonstrate that the UV-assisted GOPS-based functionalization notably improves the homogeneity of the surface DNA distribution. Later, the electrical characteristics of 80 devices were analyzed before and after the biofunctionalization process, indicating that the results are highly dependent on the experimental protocol. We found that the TBA-15 hybridization capacity with its complementary strand is time dependent and that the transfer characteristics of the Si NN-FETs obtained after the TBA-15 probe grafting are also time dependent. These results help to elucidate and define the experimental precautions that must be taken into account to fabricate reproducible devices.

4.
Beilstein J Nanotechnol ; 10: 389-398, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30800578

RESUMO

The next generation of electronic devices requires faster operation velocity, higher storage capacity and reduction of the power consumption. In this context, resistive switching memory chips emerge as promising candidates for developing new non-volatile memory modules. Manganites have received increasing interest as memristive material as they exhibit a remarkable switching response. Nevertheless, their integration in CMOS-compatible substrates, such as silicon wafers, requires further effort. Here the integration of LaMnO3+δ as memristive material in a metal-insulator-metal structure is presented using a silicon-based substrate and the pulsed injection metal organic chemical vapour deposition technique. We have developed three different growth strategies with which we are able to tune the oxygen content and Mn oxidation state moving from an orthorhombic to a rhombohedral structure for the active LaMnO3+δ material. Furthermore, a good resistive switching response has been obtained for LaMnO3+δ-based devices fabricated using optimized growth strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA