Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(24): 7444-8, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26034277

RESUMO

There is a fundamental interest in studying photoinduced dynamics in nanoparticles and nanostructures as it provides insight into their mechanical and thermal properties out of equilibrium and during phase transitions. Nanoparticles can display significantly different properties from the bulk, which is due to the interplay between their size, morphology, crystallinity, defect concentration, and surface properties. Particularly interesting scenarios arise when nanoparticles undergo phase transitions, such as melting induced by an optical laser. Current theoretical evidence suggests that nanoparticles can undergo reversible nonhomogenous melting with the formation of a core-shell structure consisting of a liquid outer layer. To date, studies from ensembles of nanoparticles have tentatively suggested that such mechanisms are present. Here we demonstrate imaging transient melting and softening of the acoustic phonon modes of an individual gold nanocrystal, using an X-ray free electron laser. The results demonstrate that the transient melting is reversible and nonhomogenous, consistent with a core-shell model of melting. The results have implications for understanding transient processes in nanoparticles and determining their elastic properties as they undergo phase transitions.

2.
Proc Natl Acad Sci U S A ; 111(35): 12769-74, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25136092

RESUMO

It has long been known that toxins produced by Bacillus thuringiensis (Bt) are stored in the bacterial cells in crystalline form. Here we describe the structure determination of the Cry3A toxin found naturally crystallized within Bt cells. When whole Bt cells were streamed into an X-ray free-electron laser beam we found that scattering from other cell components did not obscure diffraction from the crystals. The resolution limits of the best diffraction images collected from cells were the same as from isolated crystals. The integrity of the cells at the moment of diffraction is unclear; however, given the short time (∼ 5 µs) between exiting the injector to intersecting with the X-ray beam, our result is a 2.9-Å-resolution structure of a crystalline protein as it exists in a living cell. The study suggests that authentic in vivo diffraction studies can produce atomic-level structural information.


Assuntos
Bacillus thuringiensis/química , Proteínas de Bactérias/química , Cristalografia por Raios X/métodos , Endotoxinas/química , Proteínas Hemolisinas/química , Esporos Bacterianos/química , Bacillus thuringiensis/ultraestrutura , Toxinas de Bacillus thuringiensis , Cristalização , Cristalografia por Raios X/instrumentação , Lasers , Esporos Bacterianos/ultraestrutura , Síncrotrons , Difração de Raios X
3.
Proc Natl Acad Sci U S A ; 109(47): 19103-7, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23129631

RESUMO

The ultrabright femtosecond X-ray pulses provided by X-ray free-electron lasers open capabilities for studying the structure and dynamics of a wide variety of systems beyond what is possible with synchrotron sources. Recently, this "probe-before-destroy" approach has been demonstrated for atomic structure determination by serial X-ray diffraction of microcrystals. There has been the question whether a similar approach can be extended to probe the local electronic structure by X-ray spectroscopy. To address this, we have carried out femtosecond X-ray emission spectroscopy (XES) at the Linac Coherent Light Source using redox-active Mn complexes. XES probes the charge and spin states as well as the ligand environment, critical for understanding the functional role of redox-active metal sites. Kß(1,3) XES spectra of Mn(II) and Mn(2)(III,IV) complexes at room temperature were collected using a wavelength dispersive spectrometer and femtosecond X-ray pulses with an individual dose of up to >100 MGy. The spectra were found in agreement with undamaged spectra collected at low dose using synchrotron radiation. Our results demonstrate that the intact electronic structure of redox active transition metal compounds in different oxidation states can be characterized with this shot-by-shot method. This opens the door for studying the chemical dynamics of metal catalytic sites by following reactions under functional conditions. The technique can be combined with X-ray diffraction to simultaneously obtain the geometric structure of the overall protein and the local chemistry of active metal sites and is expected to prove valuable for understanding the mechanism of important metalloproteins, such as photosystem II.

4.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 11): 1584-7, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23090408

RESUMO

An electrospun liquid microjet has been developed that delivers protein microcrystal suspensions at flow rates of 0.14-3.1 µl min(-1) to perform serial femtosecond crystallography (SFX) studies with X-ray lasers. Thermolysin microcrystals flowed at 0.17 µl min(-1) and diffracted to beyond 4 Å resolution, producing 14,000 indexable diffraction patterns, or four per second, from 140 µg of protein. Nanoflow electrospinning extends SFX to biological samples that necessitate minimal sample consumption.


Assuntos
Cristalografia por Raios X/instrumentação , Cristalização , Cristalografia por Raios X/economia , Campos Eletromagnéticos , Desenho de Equipamento , Cinética , Lasers , Tamanho da Amostra , Termolisina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA