Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(1): e2209944120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574650

RESUMO

After natalizumab (NAT) cessation, some multiple sclerosis (MS) patients experience a severe disease rebound. The rebound pathophysiology is still unclear; however, it has been linked to interleukin-17-producing T-helper (Th17) cells. We demonstrate that during NAT treatment, MCAM+CCR6+Th17 cells gradually acquire a pathogenic profile, including proinflammatory cytokine production, pathogenic transcriptional signatures, brain endothelial barrier impairment, and oligodendrocyte damage via induction of apoptotic pathways. This is accompanied by an increase in Th17 cell frequencies in the cerebrospinal fluid of NAT-treated patients. Notably, Th17 cells derived from NAT-treated patients, who later developed a disease rebound upon treatment cessation, displayed a distinct transcriptional pathogenicity profile associated with altered migratory properties. Accordingly, increased brain infiltration of patient Th17 cells was illustrated in a humanized mouse model and brain histology from a rebound patient. Therefore, peripheral blood-accumulated MCAM+CCR6+Th17 cells might be involved in rebound pathophysiology, and monitoring of changes in Th17 cell pathogenicity in patients before/during NAT treatment cessation might enable rebound risk assessment in the future.


Assuntos
Esclerose Múltipla , Células Th17 , Animais , Camundongos , Natalizumab/farmacologia , Natalizumab/uso terapêutico , Virulência , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/líquido cefalorraquidiano , Encéfalo
2.
Brain ; 145(2): 426-440, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-34791056

RESUMO

Progressive multifocal leukoencephalopathy (PML) is an opportunistic infection of the CNS caused by the JC virus, which infects white and grey matter cells and leads to irreversible demyelination and neuroaxonal damage. Brain MRI, in addition to the clinical presentation and demonstration of JC virus DNA either in the CSF or by histopathology, is an important tool in the detection of PML. In clinical practice, standard MRI pulse sequences are utilized for screening, diagnosis and monitoring of PML, but validated imaging-based outcome measures for use in prospective, interventional clinical trials for PML have yet to be established. We review the existing literature regarding the use of MRI and PET in PML and discuss the implications of PML histopathology for neuroradiology. MRI not only demonstrates the localization and extent of PML lesions, but also mirrors the tissue destruction, ongoing viral spread, and resulting inflammation. Finally, we explore the potential for imaging measures to serve as an outcome in PML clinical trials and provide recommendations for current and future imaging outcome measure development in this area.


Assuntos
Vírus JC , Leucoencefalopatia Multifocal Progressiva , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Humanos , Vírus JC/genética , Leucoencefalopatia Multifocal Progressiva/diagnóstico por imagem , Leucoencefalopatia Multifocal Progressiva/tratamento farmacológico , Imageamento por Ressonância Magnética , Estudos Prospectivos
3.
Ann Neurol ; 90(3): 440-454, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34231919

RESUMO

OBJECTIVE: Histology reveals that early active multiple sclerosis lesions can be classified into 3 main interindividually heterogeneous but intraindividually stable immunopathological patterns of active demyelination (patterns I-III). In patterns I and II, a T-cell- and macrophage-associated demyelination is suggested, with pattern II only showing signs of a humoral immune response. Pattern III is characterized by inflammatory lesions with an oligodendrocyte degeneration. Patterns suggest pathogenic heterogeneity, and we postulated that they have distinct magnetic resonance imaging (MRI) correlates that may serve as biomarkers. METHODS: We evaluated in an international collaborative retrospective cohort study the MRI lesion characteristics of 789 conventional prebiopsy and follow-up MRIs in relation to their histopathologically classified immunopathological patterns (n = 161 subjects) and lesion edge features (n = 112). RESULTS: A strong association of a ringlike enhancement and a hypointense T2-weighted (T2w) rim with patterns I and II, but not pattern III, was observed. Only a fraction of pattern III patients showed a ringlike enhancement, and this was always atypical. Ringlike enhancement and T2w rims colocalized, and ringlike enhancement showed a strong association with macrophage rims as shown by histology. A strong concordance of MRI lesion characteristics, meaning that different lesions showed the same features, was found when comparing biopsied and nonbiopsied lesions at a given time point, indicating lesion homogeneity within individual patients. INTERPRETATION: We provide robust evidence that MRI characteristics reflect specific morphological features of multiple sclerosis immunopatterns and that ringlike enhancement and T2w hypointense rims might serve as a valuable noninvasive biomarker to differentiate pathological patterns of demyelination. ANN NEUROL 2021;90:440-454.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/imunologia , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/imunologia , Adulto , Encéfalo/patologia , Estudos de Coortes , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/patologia , Estudos Retrospectivos
4.
Brain ; 144(9): 2683-2695, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33757118

RESUMO

Progressive multifocal leukoencephalopathy (PML) is a severe infection of the CNS caused by the polyomavirus JC that can occur in multiple sclerosis patients treated with natalizumab. Clinical management of patients with natalizumab-associated PML is challenging not least because current imaging tools for the early detection, longitudinal monitoring and differential diagnosis of PML lesions are limited. Here we evaluate whether translocator protein (TSPO) PET imaging can be applied to monitor the inflammatory activity of PML lesions over time and differentiate them from multiple sclerosis lesions. For this monocentre pilot study we followed eight patients with natalizumab-associated PML with PET imaging using the TSPO radioligand 18F-GE-180 combined with frequent 3 T MRI. In addition we compared TSPO PET signals in PML lesions with the signal pattern of multiple sclerosis lesions from 17 independent multiple sclerosis patients. We evaluated the standardized uptake value ratio as well as the morphometry of the TSPO uptake for putative PML and multiple sclerosis lesions areas compared to a radiologically unaffected pseudo-reference region in the cerebrum. Furthermore, TSPO expression in situ was immunohistochemically verified by determining the density and cellular identity of TSPO-expressing cells in brain sections from four patients with early natalizumab-associated PML as well as five patients with other forms of PML and six patients with inflammatory demyelinating CNS lesions (clinically isolated syndrome/multiple sclerosis). Histological analysis revealed a reticular accumulation of TSPO expressing phagocytes in PML lesions, while such phagocytes showed a more homogeneous distribution in putative multiple sclerosis lesions. TSPO PET imaging showed an enhanced tracer uptake in natalizumab-associated PML lesions that was present from the early to the chronic stages (up to 52 months after PML diagnosis). While gadolinium enhancement on MRI rapidly declined to baseline levels, TSPO tracer uptake followed a slow one phase decay curve. A TSPO-based 3D diagnostic matrix taking into account the uptake levels as well as the shape and texture of the TSPO signal differentiated >96% of PML and multiple sclerosis lesions. Indeed, treatment with rituximab after natalizumab-associated PML in three patients did not affect tracer uptake in the assigned PML lesions but reverted tracer uptake to baseline in the assigned active multiple sclerosis lesions. Taken together our study suggests that TSPO PET imaging can reveal CNS inflammation in natalizumab-associated PML. TSPO PET may facilitate longitudinal monitoring of disease activity and help to distinguish recurrent multiple sclerosis activity from PML progression.


Assuntos
Fatores Imunológicos/efeitos adversos , Leucoencefalopatia Multifocal Progressiva/induzido quimicamente , Leucoencefalopatia Multifocal Progressiva/metabolismo , Natalizumab/efeitos adversos , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA/metabolismo , Adulto , Meios de Contraste/metabolismo , Feminino , Radioisótopos de Flúor/metabolismo , Humanos , Indóis/metabolismo , Leucoencefalopatia Multifocal Progressiva/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos
5.
Am J Med Genet A ; 185(1): 15-25, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33029936

RESUMO

Biallelic mutations in SNORD118, encoding the small nucleolar RNA U8, cause leukoencephalopathy with calcifications and cysts (LCC). Given the difficulty in interpreting the functional consequences of variants in nonprotein encoding genes, and the high allelic polymorphism across SNORD118 in controls, we set out to provide a description of the molecular pathology and clinical spectrum observed in a cohort of patients with LCC. We identified 64 affected individuals from 56 families. Age at presentation varied from 3 weeks to 67 years, with disease onset after age 40 years in eight patients. Ten patients had died. We recorded 44 distinct, likely pathogenic, variants in SNORD118. Fifty two of 56 probands were compound heterozygotes, with parental consanguinity reported in only three families. Forty nine of 56 probands were either heterozygous (46) or homozygous (three) for a mutation involving one of seven nucleotides that facilitate a novel intramolecular interaction between the 5' end and 3' extension of precursor-U8. There was no obvious genotype-phenotype correlation to explain the marked variability in age at onset. Complementing recently published functional analyses in a zebrafish model, these data suggest that LCC most often occurs due to combinatorial severe and milder mutations, with the latter mostly affecting 3' end processing of precursor-U8.


Assuntos
Calcinose/genética , Estudos de Associação Genética , Leucoencefalopatias/genética , RNA Nucleolar Pequeno/genética , Adolescente , Adulto , Idoso , Animais , Calcinose/complicações , Calcinose/patologia , Criança , Pré-Escolar , Consanguinidade , Modelos Animais de Doenças , Feminino , Heterozigoto , Humanos , Lactente , Recém-Nascido , Leucoencefalopatias/complicações , Leucoencefalopatias/patologia , Masculino , Pessoa de Meia-Idade , Patologia Molecular , Adulto Jovem , Peixe-Zebra/genética
6.
Acta Neuropathol ; 139(3): 547-564, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31950335

RESUMO

Early active multiple sclerosis (MS) lesions can be classified histologically into three main immunopathological patterns of demyelination (patterns I-III), which suggest pathogenic heterogeneity and may predict therapy response. Patterns I and II show signs of immune-mediated demyelination, but only pattern II is associated with antibody/complement deposition. In pattern III lesions, which include Baló's concentric sclerosis, primary oligodendrocyte damage was proposed. Serum antibody reactivities could reflect disease pathogenesis and thus distinguish histopathologically defined MS patterns. We established a customized microarray with more than 700 peptides that represent human and viral antigens potentially relevant for inflammatory demyelinating CNS diseases, and tested sera from 66 patients (pattern I n = 12; II n = 29; III n = 25, including 8 with Baló's), healthy controls, patients with Sjögren's syndrome and stroke patients. Cell-based assays were performed for aquaporin 1 (AQP1) and AQP4 antibody detection. No single peptide showed differential binding among study cohorts. Because antibodies can react with different peptides from one protein, we also analyzed groups of peptides. Patients with pattern II showed significantly higher reactivities to Nogo-A peptides as compared to patterns I (p = 0.02) and III (p = 0.02). Pattern III patients showed higher reactivities to AQP1 (compared to pattern I p = 0.002, pattern II p = 0.001) and varicella zoster virus (VZV, compared to pattern II p = 0.05). In patients with Baló's, AQP1 reactivity was also significantly higher compared to patients without Baló's (p = 0.04), and the former revealed distinct antibody signatures. Histologically, Baló's patients showed loss of AQP1 and AQP4 in demyelinating lesions, but no antibodies binding conformational AQP1 or AQP4 were detected. In summary, higher reactivities to Nogo-A peptides in pattern II patients could be relevant for enhanced axonal repair and remyelination. Higher reactivities to AQP1 peptides in pattern III patients and its subgroup of Baló's patients possibly reflect astrocytic damage. Finally, latent VZV infection may cause peripheral immune activation.


Assuntos
Autoanticorpos/imunologia , Esclerose Múltipla/classificação , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Adulto , Aquaporina 1/imunologia , Aquaporina 4/imunologia , Autoantígenos/imunologia , Esclerose Cerebral Difusa de Schilder/classificação , Esclerose Cerebral Difusa de Schilder/imunologia , Esclerose Cerebral Difusa de Schilder/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neuromielite Óptica/classificação , Neuromielite Óptica/imunologia , Neuromielite Óptica/patologia
7.
Acta Neuropathol ; 138(3): 443-456, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31030237

RESUMO

The limited efficacy of glucocorticoids (GCs) during therapy of acute relapses in multiple sclerosis (MS) leads to long-term disability. We investigated the potential of vitamin D (VD) to enhance GC efficacy and the mechanisms underlying this VD/GC interaction. In vitro, GC receptor (GR) expression levels were quantified by ELISA and induction of T cell apoptosis served as a functional readout to assess synergistic 1,25(OH)2D3 (1,25D)/GC effects. Experimental autoimmune encephalomyelitis (MOG35-55 EAE) was induced in mice with T cell-specific GR or mTORc1 deficiency. 25(OH)D (25D) levels were determined in two independent cohorts of MS patients with stable disease or relapses either responsive or resistant to GC treatment (initial cohort: n = 110; validation cohort: n = 85). Gene expression of human CD8+ T cells was analyzed by microarray (n = 112) and correlated with 25D serum levels. In vitro, 1,25D upregulated GR protein levels, leading to increased GC-induced T cell apoptosis. 1,25D/GC combination therapy ameliorated clinical EAE course more efficiently than respective monotherapies, which was dependent on GR expression in T cells. In MS patients from two independent cohorts, 25D deficiency was associated with GC-resistant relapses. Mechanistic studies revealed that synergistic 1,25D/GC effects on apoptosis induction were mediated by the mTOR but not JNK pathway. In line, 1,25D inhibited mTORc1 activity in murine T cells, and low 25D levels in humans were associated with a reduced expression of mTORc1 inhibiting tuberous sclerosis complex 1 in CD8+ T cells. GR upregulation by 1,25D and 1,25D/GC synergism in vitro and therapeutic efficacy in vivo were abolished in animals with a T cell-specific mTORc1 deficiency. Specific inhibition of mTORc1 by everolimus increased the efficacy of GC in EAE. 1,25D augments GC-mediated effects in vitro and in vivo in a T cell-specific, GR-dependent manner via mTORc1 inhibition. These data may have implications for improvement of anti-inflammatory GC therapy.


Assuntos
Calcitriol/farmacologia , Encefalomielite Autoimune Experimental/metabolismo , Glucocorticoides/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Encefalomielite Autoimune Experimental/imunologia , Humanos , Camundongos , Esclerose Múltipla , Receptores de Glucocorticoides/efeitos dos fármacos , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais/fisiologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
8.
Mult Scler ; 25(12): 1618-1632, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30657420

RESUMO

BACKGROUND: Daclizumab is a monoclonal antibody that binds the high-affinity interleukin-2 receptor and was approved for the treatment of relapsing multiple sclerosis. Due to severe inflammatory brain disorders, the approval was suspended in March 2018. OBJECTIVE AND METHODS: This retrospective cohort study summarizes clinical, laboratory, radiological, and histological findings of seven patients who developed meningo-/encephalitis after daclizumab therapy. RESULTS: Patients presented with encephalitis and/or meningitis and suffered from systemic symptoms such as fever (5/7), exanthema (5/7), or gastrointestinal symptoms (4/7). Secondary autoimmune diseases developed. Blood analysis revealed an increase in eosinophils (5/7). Six patients fulfilled the diagnostic criteria for a drug reaction with eosinophilia and systemic symptoms (DRESS). Magnetic resonance imaging (MRI) showed multiple contrast-enhancing lesions, and enhancement of the ependyma (6/7), meninges (5/7), cranial or spinal nerves (2/7), and a vasculitic pattern (3/7). Histology revealed a pronounced inflammatory infiltrate consisting of lymphocytes, plasma cells and eosinophils, and densely infiltrated vessels. Most patients showed an insufficient therapeutic response and a high disability at last follow-up (median Expanded Disability Status Scale (EDSS) 8). Two patients died. CONCLUSION: Meningoencephalitis and DRESS may occur with daclizumab therapy. This potential lethal side effect is characterized by a dysregulated immune response. Our findings underline the importance of postmarketing drug surveillance.


Assuntos
Anticorpos Monoclonais/efeitos adversos , Daclizumabe/efeitos adversos , Encefalite/induzido quimicamente , Esclerose Múltipla/tratamento farmacológico , Adulto , Doenças Autoimunes/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Daclizumabe/uso terapêutico , Encefalite/patologia , Feminino , Humanos , Imunossupressores/efeitos adversos , Imunossupressores/uso terapêutico , Linfócitos/patologia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
9.
J Neuroinflammation ; 14(1): 144, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28738904

RESUMO

BACKGROUND: Multiple sclerosis (MS) is an autoimmune disorder characterized by chronic inflammation, demyelination, and neuronal damage. During autoimmunity, cytokines are important mediators of the inflammation. In this line, interleukin-27 (IL-27) modulates inflammation and can be produced directly at inflammatory sites such as in the joints during rheumatoid arthritis or in the central nervous system (CNS) during MS. While in animal models of MS, treatment with IL-27 decreases the disease severity, its role in humans is not clearly established and it is not known if IL-27 could be detected in the cerebrospinal fluid (CSF) of MS patients. METHODS: In this study, we measured IL-27 levels using a quantitative enzyme-linked immunosorbent assay in CSF of patients with relapsing remitting multiple sclerosis (RRMS), isolated optic neuritis (ON) and non-inflammatory neurological disease (NIND) as well as in the sera of healthy donors (HD) and RRMS patients undergoing different disease modifying treatments. We further confirmed by immunohistology of patient biopsies the identity of IL-27 producing cells in the brain of active MS lesions. RESULTS: We observed that IL-27 levels are increased in the CSF but not in the sera of RRMS compared to HD. We confirmed that IL-27 is expressed in active MS plaques by astrocytes of MS patients. CONCLUSIONS: Our results point toward a local secretion of IL-27 in the CNS that is increased during autoimmune processes. We propose that local production of IL-27 could sign the induction of a regulatory response that promotes inflammation's resolution. The effect of new immunomodulatory therapies on cerebral IL-27 production could be used to understand the biology of IL-27 in MS disease.


Assuntos
Sistema Nervoso Central/metabolismo , Interleucina-27/sangue , Interleucina-27/líquido cefalorraquidiano , Esclerose Múltipla/patologia , Adulto , Astrócitos/metabolismo , Astrócitos/patologia , Sistema Nervoso Central/patologia , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Interleucina-27/metabolismo , Interleucinas/metabolismo , Masculino , Pessoa de Meia-Idade , Antígenos de Histocompatibilidade Menor/metabolismo , Bandas Oligoclonais/metabolismo , Índice de Gravidade de Doença , Estatísticas não Paramétricas , Adulto Jovem
10.
Acta Neuropathol ; 134(1): 45-64, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28332093

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS) in which oligodendrocytes, the CNS cells that stain most robustly for iron and myelin are the targets of injury. Metals are essential for normal CNS functioning, and metal imbalances have been linked to demyelination and neurodegeneration. Using a multidisciplinary approach involving synchrotron techniques, iron histochemistry and immunohistochemistry, we compared the distribution and quantification of iron and zinc in MS lesions to the surrounding normal appearing and periplaque white matter, and assessed the involvement of these metals in MS lesion pathogenesis. We found that the distribution of iron and zinc is heterogeneous in MS plaques, and with few remarkable exceptions they do not accumulate in chronic MS lesions. We show that brain iron tends to decrease with increasing age and disease duration of MS patients; reactive astrocytes organized in large astrogliotic areas in a subset of smoldering and inactive plaques accumulate iron and safely store it in ferritin; a subset of smoldering lesions do not contain a rim of iron-loaded macrophages/microglia; and the iron content of shadow plaques varies with the stage of remyelination. Zinc in MS lesions was generally decreased, paralleling myelin loss. Iron accumulates concentrically in a subset of chronic inactive lesions suggesting that not all iron rims around MS lesions equate with smoldering plaques. Upon degeneration of iron-loaded microglia/macrophages, astrocytes may form an additional protective barrier that may prevent iron-induced oxidative damage.


Assuntos
Química Encefálica , Ferro/análise , Esclerose Múltipla/metabolismo , Zinco/análise , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Feminino , Ferritinas/química , Humanos , Macrófagos/química , Macrófagos/patologia , Masculino , Microglia/química , Microglia/metabolismo , Pessoa de Meia-Idade , Esclerose Múltipla/patologia , Remielinização , Adulto Jovem
11.
Acta Neuropathol ; 134(1): 15-34, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28386765

RESUMO

Cortical demyelination is a widely recognized hallmark of multiple sclerosis (MS) and correlate of disease progression and cognitive decline. The pathomechanisms initiating and driving gray matter damage are only incompletely understood. Here, we determined the infiltrating leukocyte subpopulations in 26 cortical demyelinated lesions of biopsied MS patients and assessed their contribution to cortical lesion formation in a newly developed mouse model. We find that conformation-specific anti-myelin antibodies contribute to cortical demyelination even in the absence of the classical complement pathway. T cells and natural killer cells are relevant for intracortical type 2 but dispensable for subpial type 3 lesions, whereas CCR2+ monocytes are required for both. Depleting CCR2+ monocytes in marmoset monkeys with experimental autoimmune encephalomyelitis using a novel humanized CCR2 targeting antibody translates into significantly less cortical demyelination and disease severity. We conclude that biologics depleting CCR2+ monocytes might be attractive candidates for preventing cortical lesion formation and ameliorating disease progression in MS.


Assuntos
Córtex Cerebral/imunologia , Encefalomielite Autoimune Experimental/imunologia , Monócitos/imunologia , Esclerose Múltipla/imunologia , Adulto , Animais , Callithrix , Córtex Cerebral/patologia , Estudos de Coortes , Encefalomielite Autoimune Experimental/patologia , Feminino , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Masculino , Meninges/imunologia , Meninges/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Monócitos/patologia , Esclerose Múltipla/patologia , Distribuição Aleatória , Receptores CCR2/metabolismo , Linfócitos T/imunologia , Linfócitos T/patologia
12.
Mult Scler ; 23(1): 72-81, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27037182

RESUMO

BACKGROUND: Severe rebound multiple sclerosis (MS) activity is a life-threatening complication of natalizumab (NTZ) withdrawal, for which pathogenesis and treatment are still unclear. We report the immunological and pathological characterization of a case of central nervous system (CNS) inflammatory demyelination after NTZ discontinuation. OBJECTIVE: To understand the pathophysiology of this neuroinflammatory condition. METHODS: Antemortem blood and cerebrospinal fluid (CSF) analysis was compared with postmortem pathological studies, as well as with novel flow cytometry characterization of immune cells isolated from the CNS parenchyma. RESULTS: Pathological analysis of the brain revealed the presence of innumerable active inflammatory demyelinating lesions typical of immunopathological pattern II. Monocytes/macrophages and B cells were enriched in the CNS parenchyma compared to the CSF. Numerous plasma cells were present in the lesions, but CD8 T lymphocytes were predominant in the parenchyma, as opposed to CD4 in the CSF. CNS-infiltrating lymphocytes expressed high levels of adhesion molecules, granzyme B (GzB), interferon-gamma (IFN-γ), and interleukin (IL)-17. CONCLUSIONS: Our results underline the differences in immune cell populations between the CSF and the CNS parenchyma, and suggest that aggressive immunosuppressive therapy targeting both T and B lymphocytes is warranted to control the overwhelming CNS inflammation.


Assuntos
Linfócitos B/patologia , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/patologia , Natalizumab/uso terapêutico , Síndrome de Abstinência a Substâncias/patologia , Linfócitos T/patologia , Adulto , Linfócitos B/imunologia , Feminino , Humanos , Interferon gama/uso terapêutico , Esclerose Múltipla/diagnóstico por imagem , Linfócitos T/imunologia
13.
Hum Genet ; 135(7): 813-26, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27138983

RESUMO

Molybdenum cofactor (MoCo) deficiency is a rare, autosomal-recessive disorder, mainly caused by mutations in MOCS1 (MoCo deficiency type A) or MOCS2 (MoCo deficiency type B) genes; the absence of active MoCo results in a deficiency in all MoCo-dependent enzymes. Patients with MoCo deficiency present with neonatal seizures, feeding difficulties, severe developmental delay, brain atrophy and early childhood death. Although substitution therapy with cyclic pyranopterin monophosphate (cPMP) has been successfully used in both Mocs1 knockout mice and in patients with MoCo deficiency type A, there is currently no Mocs2 knockout mouse and no curative therapy for patients with MoCo deficiency type B. Therefore, we generated and characterized a Mocs2-null mouse model of MoCo deficiency type B. Expression analyses of Mocs2 revealed a ubiquitous expression pattern; however, at the cellular level, specific cells show prominent Mocs2 expression, e.g., neuronal cells in cortex, hippocampus and brainstem. Phenotypic analyses demonstrated that Mocs2 knockout mice failed to thrive and died within 11 days after birth. None of the tested MoCo-dependent enzymes were active in Mocs2-deficient mice, leading to elevated concentrations of purines, such as hypoxanthine and xanthine, and non-detectable levels of uric acid in the serum and urine. Moreover, elevated concentrations of S-sulfocysteine were measured in the serum and urine. Increased levels of xanthine resulted in bladder and kidney stone formation, whereas increased concentrations of toxic sulfite triggered neuronal apoptosis. In conclusion, Mocs2-deficient mice recapitulate the severe phenotype observed in humans and can now serve as a model for preclinical therapeutic approaches for MoCo deficiency type B.


Assuntos
Coenzimas/genética , Erros Inatos do Metabolismo dos Metais/genética , Metaloproteínas/genética , Proteínas Nucleares/genética , Animais , Apoptose/genética , Carbono-Carbono Liases , Coenzimas/biossíntese , Cisteína/análogos & derivados , Cisteína/urina , Modelos Animais de Doenças , Expressão Gênica , Humanos , Hipoxantina/sangue , Hipoxantina/urina , Erros Inatos do Metabolismo dos Metais/sangue , Erros Inatos do Metabolismo dos Metais/fisiopatologia , Erros Inatos do Metabolismo dos Metais/urina , Metaloproteínas/biossíntese , Camundongos , Camundongos Knockout , Cofatores de Molibdênio , Mutação , Proteínas Nucleares/biossíntese , Fenótipo , Pteridinas , Xantina/sangue , Xantina/urina
14.
Ann Neurol ; 77(4): 655-67, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25612167

RESUMO

OBJECTIVE: Axonal damage occurs early in multiple sclerosis (MS) and contributes to the degree of clinical disability. Children with MS more often show disabling and polyfocal neurological symptoms at disease onset than adults with MS. Thus, axonal damage may differ between pediatric and adult MS patients. METHODS: We analyzed axonal pathology in archival brain biopsy and autopsy samples from 19 children with early MS. Lesions were classified according to demyelinating activity and presence of remyelination. Axonal density and extent of acute axonal damage were assessed using Bielschowsky silver impregnation and immunohistochemistry for amyloid precursor protein (APP), respectively. Axonal injury was correlated with the inflammatory infiltrate as well as clinical characteristics. Results were compared with data from adult MS patients. RESULTS: Acute axonal damage was most extensive in early active demyelinating (EA) lesions of pediatric patients and correlated positively with the Expanded Disability Status Scale at attack leading to biopsy/autopsy. Comparison with 12 adult patients showed a 50% increase in the extent of acute axonal damage in EA lesions from children compared to adults, with the highest number of APP-positive spheroids found prior to puberty. The extent of acute axonal damage correlated positively with the number of lesional macrophages. Axonal density was reduced in pediatric lesions irrespective of the demyelinating activity or the presence of remyelination. Axonal reduction was similar between children and adults. INTERPRETATION: Our results provide evidence for more pronounced acute axonal damage in inflammatory demyelinating lesions from children compared to adults.


Assuntos
Axônios/patologia , Encéfalo/patologia , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/epidemiologia , Doença Aguda , Adolescente , Adulto , Fatores Etários , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
15.
Ann Neurol ; 78(5): 710-21, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26239536

RESUMO

OBJECTIVE: An extensive analysis of white matter plaques in a large sample of multiple sclerosis (MS) autopsies provides insights into the dynamic nature of MS pathology. METHODS: One hundred twenty MS cases (1,220 tissue blocks) were included. Plaque types were classified according to demyelinating activity based on stringent criteria. Early active, late active, smoldering, inactive, and shadow plaques were distinguished. A total of 2,476 MS white matter plaques were identified. Plaque type distribution was analyzed in relation to clinical data. RESULTS: Active plaques were most often found in early disease, whereas at later stages, smoldering, inactive, and shadow plaques predominated. The presence of early active plaques rapidly declined with disease duration. Plaque type distribution differed significantly by clinical course. The majority of plaques in acute monophasic and relapsing-remitting MS (RRMS) were active. Among secondary progressive MS (SPMS) cases with attacks, all plaque types could be distinguished including active plaques, in contrast to SPMS without attacks, in which inactive plaques predominated. Smoldering plaques were frequently and almost exclusively found in progressive MS. At 47 years of age, an equilibrium was observed between active and inactive plaques, whereas smoldering plaques began to peak. Men displayed a higher proportion of smoldering plaques. INTERPRETATION: Disease duration, clinical course, age, and gender contribute to the dynamic nature of white matter MS pathology. Active MS plaques predominate in acute and early RRMS and are the likely substrate of clinical attacks. Progressive MS transitions to an accumulation of smoldering plaques characterized by microglial activation and slow expansion of pre-existing plaques. Whether current MS therapeutics impact this pathological driver of disease progression remains uncertain.


Assuntos
Esclerose Múltipla/patologia , Substância Branca/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Autopsia , Doenças Desmielinizantes/patologia , Progressão da Doença , Feminino , Humanos , Masculino , Microglia/patologia , Pessoa de Meia-Idade , Esclerose Múltipla Crônica Progressiva/patologia , Esclerose Múltipla Recidivante-Remitente/patologia , Caracteres Sexuais , Adulto Jovem
16.
Mult Scler ; 22(12): 1541-1549, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26869529

RESUMO

BACKGROUND: Histopathological studies have revealed four different immunopathological patterns of lesion pathology in early multiple sclerosis (MS). Pattern II MS is characterised by immunoglobulin and complement deposition in addition to T-cell and macrophage infiltration and is more likely to respond to plasma exchange therapy, suggesting a contribution of autoantibodies. OBJECTIVE: To assess the frequency of anti-myelin oligodendrocyte glycoprotein (MOG), anti-M1-aquaporin-4 (AQP4), anti-M23-AQP4, anti-N-methyl-d-aspartate-type glutamate receptors (NMDAR) and 25 other anti-neural antibodies in pattern II MS. METHODS: Thirty-nine serum samples from patients with MS who had undergone brain biopsy (n = 24; including 13 from patients with pattern II MS) and from histopathologically non-classified MS patients (n = 15) were tested for anti-MOG, anti-M1-AQP4, anti-M23-AQP4, anti-NMDAR, anti-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-type glutamate receptors (AMPAR), anti-gamma-aminobutyric acid receptors (GABABR), anti-leucine-rich, glioma-activated protein 1 (LGI1), anti-contactin-associated protein 2 (CASPR2), anti-dipeptidyl-peptidase-like protein-6 (DPPX), anti-Tr/Delta/notch-like epidermal growth factor-related receptor (DNER), anti-Hu, anti-Yo, anti-Ri, anti-Ma1/Ma2, anti-CV2/collapsin response mediator protein 5 (CRMP5), anti-glutamic acid decarboxylase (GAD), anti-amphiphysin, anti-Ca/RhoGTPase-activating protein 26 (ARHGAP26), anti-Sj/inositol-1,4,5-trisphosphate receptor 1 (ITPR1), anti-Homer3, anti-carbonic anhydrase-related protein (CARPVIII), anti-protein kinase gamma (PKCgamma), anti-glutamate receptor delta 2 (GluRdelta2), anti-metabotropic glutamate receptor 1 (mGluR1) and anti-mGluR5, as well as for anti-glial nuclei antibodies (AGNA) and Purkinje cell antibody 2 (PCA2). RESULTS: Antibodies to MOG belonging to the complement-activating immunoglobulin G1 (IgG1) subclass were detected in a patient with pattern II MS. Detailed brain biopsy findings are shown. CONCLUSION: This is the largest study on established anti-neural antibodies performed in MS so far. MOG-IgG may play a role in a small percentage of patients diagnosed with pattern II MS.


Assuntos
Autoanticorpos/sangue , Encéfalo/patologia , Ativação do Complemento/imunologia , Esclerose Múltipla/sangue , Esclerose Múltipla/patologia , Glicoproteína Mielina-Oligodendrócito/imunologia , Proteínas do Tecido Nervoso/imunologia , Biópsia , Encéfalo/imunologia , Feminino , Humanos , Imunoglobulina G/imunologia , Pessoa de Meia-Idade
17.
Neuropathol Appl Neurobiol ; 41(6): 814-31, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25641089

RESUMO

AIMS: Natalizumab is a humanized monoclonal antibody specific for CD49d receptors of integrins. It inhibits the entry of inflammatory cells into the central nervous system and is approved for the treatment of relapsing-remitting multiple sclerosis (MS). Several lines of evidence indicate an involvement of B cells and plasma cells in MS pathogenesis. However, treatment with the natalizumab analogon PS/2 immunoglobulin G (IgG) has so far only been investigated in T cell-mediated animal models of MS. Due to the importance of B lineage cells in the pathogenesis of MS, the objective of the present study has thus been to analyse the effects of PS/2 IgG in a mouse model of MS with T and B cell cooperation (OSE mice). METHODS: OSE mice were treated with the natalizumab analogon PS/2 IgG either at disease onset or after peak of disease. Treatment was also performed with PS/2 F(ab')2 fragments. RESULTS: PS/2 IgG treatment improved the clinical outcome and decreased spinal cord demyelination and immune cell infiltration if given early in the disease course. Treatment increased blood leukocytes and resulted in a partial internalization of CD49d in T and B cells. The therapeutic effects of PS/2 IgG injections were independent of the Fc fragment as F(ab')2 injections were equally beneficial. In contrast, PS/2 IgG was not effective when given late in the disease course. CONCLUSIONS: Results indicate that natalizumab may also be beneficial in MS with B cell-driven immunopathogenesis.


Assuntos
Linfócitos B/imunologia , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/patologia , Natalizumab/administração & dosagem , Animais , Sítios de Ligação , Modelos Animais de Doenças , Imunoglobulina G/administração & dosagem , Integrina alfa4/imunologia , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Camundongos , Camundongos Transgênicos , Esclerose Múltipla/imunologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Substância Branca/efeitos dos fármacos , Substância Branca/patologia
18.
Ann Neurol ; 75(5): 728-38, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24771535

RESUMO

OBJECTIVE: Multiple sclerosis (MS) lesions demonstrate immunopathological heterogeneity in patterns of demyelination. Previous cross-sectional studies reported immunopatterns of demyelination were identical among multiple active demyelinating lesions from the same individual, but differed between individuals, leading to the hypothesis of intraindividual pathological homogeneity and interindividual heterogeneity. Other groups suggested a time-dependent heterogeneity of lesions. The objective of our present study was to analyze tissue samples collected longitudinally to determine whether patterns of demyelination persist over time within a given patient. METHODS: Archival tissue samples derived from patients with pathologically confirmed central nervous system inflammatory demyelinating disease who had undergone either diagnostic serial biopsy or biopsy followed by autopsy were analyzed immunohistochemically. The inclusion criteria consisted of the presence of early active demyelinating lesions--required for immunopattern classification--obtained from the same patient at 2 or more time points. RESULTS: Among 1,321 surgical biopsies consistent with MS, 22 cases met the study inclusion criteria. Twenty-one patients (95%) showed a persistence of immunopathological patterns in tissue sampled from different time points. This persistence was demonstrated for all major patterns of demyelination. A single patient showed features suggestive of both pattern II and pattern III on biopsy, but only pattern II among all active lesions examined at autopsy. INTERPRETATION: These findings continue to support the concept of patient-dependent immunopathological heterogeneity in early MS and suggest that the mechanisms and targets of tissue injury may differ among patient subgroups. These observations have potentially significant implications for individualized therapeutic approaches.


Assuntos
Progressão da Doença , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/epidemiologia , Adolescente , Adulto , Idoso , Estudos de Coortes , Doenças Desmielinizantes/diagnóstico , Doenças Desmielinizantes/epidemiologia , Doenças Desmielinizantes/patologia , Diagnóstico Precoce , Feminino , Seguimentos , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/patologia , Estudos Retrospectivos , Adulto Jovem
19.
Acta Neuropathol ; 130(2): 263-77, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26087903

RESUMO

Oxidative injury appears to play a major role in the propagation of demyelination and neurodegeneration in multiple sclerosis (MS). It has been suggested that endogenous anti-oxidant defense mechanisms within MS lesions are insufficient to prevent spreading of damage. Thus, current therapeutic approaches (e.g., fumarate treatment) target to up-regulate the expression of a key regulator of anti-oxidative defense, the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2). In this study, we show that Nrf2 is already strongly up-regulated in active MS lesions. Nuclear Nrf2 expression was particularly observed in oligodendrocytes and its functional activity is indicated by the expression of one of its downstream targets (heme oxygenase 1) in the same cells. In contrast, only a minor number of Nrf2-positive neurons were detected, even in highly inflammatory cortical lesions presenting with extensive oxidative injury. Overall, the most pronounced Nrf2 expression was found in degenerating cells, which showed signs of apoptotic or necrotic cell death. Via whole-genome microarray analyses of MS lesions, we observed a differential expression of numerous Nrf2-responsive genes, also involved in the defense against oxidative stress, predominantly in areas of initial myelin destruction within actively demyelinating white matter lesions. Furthermore, the expression patterns of Nrf2-induced genes differed between the white matter and cortical gray matter. Our study shows that in the MS brain, Nrf2 expression varies in different cell types and is associated with active demyelination in the lesions.


Assuntos
Encéfalo/metabolismo , Esclerose Múltipla Crônica Progressiva/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/metabolismo , Oligodendroglia/metabolismo , Doença Aguda , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/patologia , Morte Celular/fisiologia , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Estudos de Coortes , Feminino , Humanos , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , Esclerose Múltipla Crônica Progressiva/patologia , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Neurônios/patologia , Oligodendroglia/patologia , Estresse Oxidativo/fisiologia , Substância Branca/metabolismo , Substância Branca/patologia
20.
Eur Radiol ; 25(1): 122-31, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25129119

RESUMO

OBJECTIVE: To investigate posterior visual pathway damage in multiple sclerosis using ultrahigh-field magnetic resonance imaging (MRI) at 7 Tesla (7 T), and to determine its correlation with visual disability and retinal fibre layer (RNFL) damage detectable by optic coherence tomography (OCT). METHODS: We studied 7 T MRI, OCT, functional acuity contrast testing (FACT), and visually evoked potentials (VEP, n = 16) in 30 patients (including 26 relapsing-remitting MS and four clinically isolated syndrome patients) and 12 healthy controls to quantify RNFL thickness, optic radiation lesion volume, and optic radiation thickness. RESULTS: Optic radiation lesion volume was associated with thinning of the optic radiation (p < 0.001), delayed VEP (p = 0.031), and visual disability indicated by FACT (p = 0.020). Furthermore, we observed an inverse correlation between optic radiation lesion volume and RNFL thickness (p < 0.001), including patients without previous optic neuritis (p < 0.001). CONCLUSIONS: Anterior visual pathway damage, but also (subclinical) optic radiation integrity loss detectable by 7 T MRI are common findings in MS that are mutually affected. Given the association between optic radiation damage, visual impairment, and increased VEP latency in this exploratory study of a limited sample size, clinicians should be aware of acute lesions within the optic radiation in patients with (bilateral) visual disturbances. KEY POINTS: • Focal destruction of the optic radiation is detectable by 7 T MRI. • Focal optic radiation damage is common in MS. • Optic radiation damage is associated with RNFL thinning, detectable by OCT. • Optic radiation damage is associated with delayed VEP and visual dysfunction. • RNFL thickness in non-optic neuritis eyes correlates with optic radiation demyelination.


Assuntos
Esclerose Múltipla Recidivante-Remitente/patologia , Neurite Óptica/patologia , Transtornos da Visão/etiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Potenciais Evocados Visuais , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Fibras Nervosas/patologia , Músculos Oculomotores/patologia , Projetos Piloto , Estudos Prospectivos , Doenças Retinianas/patologia , Tomografia de Coerência Óptica , Transtornos da Visão/patologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA