Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 20(8): 5593-5596, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32787183

RESUMO

Surface plasmons are collective oscillations of free electrons at the interface between a conducting material and the dielectric environment. These excitations support the formation of strongly enhanced and confined electromagnetic fields. As well, they display fast dynamics lasting tens of femtoseconds and can lead to a strong nonlinear optical response at the nanoscale. Thus, they represent the perfect tool to drive and control fast optical processes, such as ultrafast optical switching, single photon emission, as well as strong coupling interactions to explore and tailor photochemical reactions. In this Virtual Issue, we gather several important papers published in Nano Letters in the past decade reporting studies on the ultrafast dynamics of surface plasmons.

2.
Nano Lett ; 18(4): 2288-2293, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29546762

RESUMO

Cathodoluminescence (CL) imaging spectroscopy provides two-dimensional optical excitation images of photonic nanostructures with a deep-subwavelength spatial resolution. So far, CL imaging was unable to provide a direct measurement of the excitation and emission probabilities of photonic nanostructures in a spatially resolved manner. Here, we demonstrate that by mapping the cathodoluminescence autocorrelation function g(2) together with the CL spectral distribution the excitation and emission rates can be disentangled at every excitation position. We use InGaN/GaN quantum wells in GaN nanowires with diameters in the range 200-500 nm as a model system to test our new g(2) mapping methodology and find characteristic differences in excitation and emission rates both between wires and within wires. Strong differences in the average CL intensity between the wires are the result of differences in the emission efficiencies. At the highest spatial resolution, intensity variations observed within wires are the result of excitation rates that vary with the nanoscale geometry of the structures. The fact that strong spatial variations observed in the CL intensity are not only uniquely linked to variations in emission efficiency but also linked to excitation efficiency has profound implications for the interpretation of the CL data for nanostructured geometries in general.

3.
Nano Lett ; 16(7): 4317-21, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27299915

RESUMO

To date, quantum sources in the ultraviolet (UV) spectral region have been obtained only in semiconductor quantum dots. Color centers in wide bandgap materials may represent a more effective alternative. However, the quest for UV quantum emitters in bulk crystals faces the difficulty of combining an efficient UV excitation/detection optical setup with the capability of addressing individual color centers in potentially highly defective materials. In this work we overcome this limit by employing an original experimental setup coupling cathodoluminescence within a scanning transmission electron microscope to a Hanbury-Brown-Twiss intensity interferometer. We identify a new extremely bright UV single photon emitter (4.1 eV) in hexagonal boron nitride. Hyperspectral cathodoluminescence maps show a high spatial localization of the emission (∼80 nm) and a typical zero-phonon line plus phonon replica spectroscopic signature, indicating a point defect origin, most likely carbon substitutional at nitrogen sites. An additional nonsingle-photon broad emission may appear in the same spectral region, which can be attributed to intrinsic defects related to electron irradiation.

4.
Nanotechnology ; 27(19): 195704, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27041669

RESUMO

The structural and optical properties of axial GaN/InGaN/GaN nanowire heterostructures with high InN molar fractions grown by molecular beam epitaxy have been studied at the nanoscale by a combination of electron microscopy, extended x-ray absorption fine structure and nano-cathodoluminescence techniques. InN molar fractions up to 50% have been successfully incorporated without extended defects, as evidence of nanowire potentialities for practical device realisation in such a composition range. Taking advantage of the N-polarity of the self-nucleated GaN NWs grown by molecular beam epitaxy on Si(111), the N-polar InGaN stability temperature diagram has been experimentally determined and found to extend to a higher temperature than its metal-polar counterpart. Furthermore, annealing of GaN-capped InGaN NWs up to 800 °C has been found to result in a 20 times increase of photoluminescence intensity, which is assigned to point defect curing.

5.
ACS Photonics ; 8(3): 916-925, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33763505

RESUMO

Photon bunching in incoherent cathodoluminescence (CL) spectroscopy originates from the fact that a single high-energy electron can generate multiple photons when interacting with a material, thus, revealing key properties of electron-matter excitation. Contrary to previous works based on Monte Carlo modeling, here we present a fully analytical model describing the amplitude and shape of the second order autocorrelation function (g (2)(τ)) for continuous and pulsed electron beams. Moreover, we extend the analysis of photon bunching to ultrashort electron pulses, in which up to 500 electrons per pulse excite the sample within a few picoseconds. We obtain a simple equation relating the bunching strength (g (2)(0)) to the electron beam current, emitter decay lifetime, pulse duration, in the case of pulsed electron beams, and electron excitation efficiency (γ), defined as the probability that an electron creates at least one interaction with the emitter. The analytical model shows good agreement with the experimental data obtained on InGaN/GaN quantum wells using continuous, ns-pulsed (using beam blanker) and ultrashort ps-pulsed (using photoemission) electron beams. We extract excitation efficiencies of 0.13 and 0.05 for 10 and 8 keV electron beams, respectively, and we observe that nonlinear effects play no compelling role, even after excitation with ultrashort and dense electron cascades in the quantum wells.

6.
ACS Nano ; 15(7): 11385-11395, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34156820

RESUMO

Thermal properties have an outsized impact on efficiency and sensitivity of devices with nanoscale structures, such as in integrated electronic circuits. A number of thermal conductivity measurements for semiconductor nanostructures exist, but are hindered by the diffraction limit of light, the need for transducer layers, the slow scan rate of probes, ultrathin sample requirements, or extensive fabrication. Here, we overcome these limitations by extracting nanoscale temperature maps from measurements of bandgap cathodoluminescence in GaN nanowires of <300 nm diameter with spatial resolution limited by the electron cascade. We use this thermometry method in three ways to determine the thermal conductivities of the nanowires in the range of 19-68 W/m·K, well below that of bulk GaN. The electron beam acts simultaneously as a temperature probe and as a controlled delta-function-like heat source to measure thermal conductivities using steady-state methods, and we introduce a frequency-domain method using pulsed electron beam excitation. The different thermal conductivity measurements we explore agree within error in uniformly doped wires. We show feasible methods for rapid, in situ, high-resolution thermal property measurements of integrated circuits and semiconductor nanodevices and enable electron-beam-based nanoscale phonon transport studies.

7.
ACS Photonics ; 7(1): 232-240, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31976357

RESUMO

Nitrogen-vacancy (NV) centers in diamond are reliable single-photon emitters, with applications in quantum technologies and metrology. Two charge states are known for NV centers, NV0 and NV-, with the latter being mostly studied due to its long electron spin coherence time. Therefore, control over the charge state of the NV centers is essential. However, an understanding of the dynamics between the different states still remains challenging. Here, conversion from NV- to NV0 due to electron-induced carrier generation is shown. Ultrafast pump-probe cathodoluminescence spectroscopy is presented for the first time, with electron pulses as pump and laser pulses as probe, to prepare and read out the NV states. The experimental data are explained with a model considering carrier dynamics (0.8 ns), NV0 spontaneous emission (20 ns), and NV0 → NV- back transfer (500 ms). The results provide new insights into the NV- → NV0 conversion dynamics and into the use of pump-probe cathodoluminescence as a nanoscale NV characterization tool.

8.
Nat Commun ; 10(1): 599, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30723196

RESUMO

Relativistic electron beams create optical radiation when interacting with tailored nanostructures. This phenomenon has been so far used to design grating-based and holographic electron-driven photon sources. It has been proposed recently that such sources can be used for hybrid electron- and light-based spectroscopy techniques. However, this demands the design of a thin-film source suitable for electron-microscopy applications. Here, we present a mesoscopic structure composed of an array of nanoscale holes in a gold film which is designed using transformation optics and delivers ultrashort chirped electromagnetic wave packets upon 30-200 keV electron irradiation. The femtosecond photon bunches result from coherent scattering of surface plasmon polaritons with hyperbolic dispersion. They decay by radiation in a broad spectral band which is focused into a 1.5 micrometer beam waist. The focusing ability and broadband nature of this photon source will initiate applications in ultrafast spectral interferometry techniques.

9.
ACS Photonics ; 6(4): 1067-1072, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-31024982

RESUMO

We investigate the nanoscale excitation of Ag nanocubes with coherent cathodoluminescence imaging spectroscopy (CL) to resolve the factors that determine the spatial resolution of CL as a deep-subwavelength imaging technique. The 10-30 keV electron beam coherently excites localized plasmons in 70 nm Ag cubes at 2.4 and 3.1 eV. The radiation from these plasmon modes is collected in the far-field together with the secondary electron intensity. CL line scans across the nanocubes show exponentially decaying tails away from the cube that reveal the evanescent coupling of the electron field to the resonant plasmon modes. The measured CL decay lengths range from 8 nm (10 keV) to 12 nm (30 keV) and differ from the calculated ones by only 1-3 nm. A statistical model of electron scattering inside the Ag nanocubes is developed to analyze the secondary electron images and compare them with the CL data. The Ag nanocube edges are derived from the CL line scans with a systematic error less than 3 nm. The data demonstrate that CL probes the electron-induced plasmon fields with nanometer accuracy.

10.
Microscopy (Oxf) ; 67(suppl_1): i40-i51, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29584929

RESUMO

We present the surface plasmon resonance modes in three-dimensional (3D) upright split ring resonators (SRR) as studied by correlative cathodoluminescence (CL) spectroscopy in a scanning electron microscope (SEM) and electron energy loss spectroscopy (EELS) in a transmission electron microscope. We discuss the challenges inherent in studying the plasmon modes of a 3D nanostructure and how meeting these challenges benefits from the complementary use of EELS and SEM-CL. With the use of EELS, we detect a strong first order mode in the SRR; with comparison to simulations, we are able to identify this as the well-known magnetic dipole moment of the SRR. Combining the EELS spectra with SEM-CL on the same structure reveals the higher order modes present in this 3D nanostructure, which we link to the coupling and hybridization of rim modes present in the two upright hollow pillars of the split ring.

11.
Nat Chem ; 10(7): 740-745, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29867120

RESUMO

Biological and bio-inspired mineralization processes yield a variety of three-dimensional structures with relevance for fields such as photonics, electronics and photovoltaics. However, these processes are only compatible with specific material compositions, often carbonate salts, thereby hampering widespread applications. Here we present a strategy to convert a wide range of metal carbonate structures into lead halide perovskite semiconductors with tunable bandgaps, while preserving the 3D shape. First, we introduce lead ions by cation exchange. Second, we use carbonate as a leaving group, facilitating anion exchange with halide, which is followed rapidly by methylammonium insertion to form the perovskite. As proof of principle, pre-programmed carbonate salt shapes such as vases, coral-like forms and helices are transformed into perovskites while preserving the morphology and crystallinity of the initial micro-architectures. This approach also readily converts calcium carbonate biominerals into semiconductors, furnishing biological and programmable synthetic shapes with the performance of artificial compositions such as perovskite-based semiconductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA