Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(21): 5357-5374.e22, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34582788

RESUMO

Despite remarkable clinical efficacy of immune checkpoint blockade (ICB) in cancer treatment, ICB benefits for triple-negative breast cancer (TNBC) remain limited. Through pooled in vivo CRISPR knockout (KO) screens in syngeneic TNBC mouse models, we found that deletion of the E3 ubiquitin ligase Cop1 in cancer cells decreases secretion of macrophage-associated chemokines, reduces tumor macrophage infiltration, enhances anti-tumor immunity, and strengthens ICB response. Transcriptomics, epigenomics, and proteomics analyses revealed that Cop1 functions through proteasomal degradation of the C/ebpδ protein. The Cop1 substrate Trib2 functions as a scaffold linking Cop1 and C/ebpδ, which leads to polyubiquitination of C/ebpδ. In addition, deletion of the E3 ubiquitin ligase Cop1 in cancer cells stabilizes C/ebpδ to suppress expression of macrophage chemoattractant genes. Our integrated approach implicates Cop1 as a target for improving cancer immunotherapy efficacy in TNBC by regulating chemokine secretion and macrophage infiltration in the tumor microenvironment.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Imunoterapia , Macrófagos/enzimologia , Neoplasias/imunologia , Neoplasias/terapia , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Linhagem Celular Tumoral , Quimiocinas/metabolismo , Quimiotaxia , Modelos Animais de Doenças , Biblioteca Gênica , Humanos , Evasão da Resposta Imune , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteólise , Especificidade por Substrato , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/terapia
2.
Nucleic Acids Res ; 52(D1): D61-D66, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37971305

RESUMO

The Cistrome Data Browser is a resource of ChIP-seq, ATAC-seq and DNase-seq data from humans and mice. It provides maps of the genome-wide locations of transcription factors, cofactors, chromatin remodelers, histone post-translational modifications and regions of chromatin accessible to endonuclease activity. Cistrome DB v3.0 contains approximately 45 000 human and 44 000 mouse samples with about 32 000 newly collected datasets compared to the previous release. The Cistrome DB v3.0 user interface is implemented as a single page application that unifies menu driven and data driven search functions and provides an embedded genome browser, which allows users to find and visualize data more effectively. Users can find informative chromatin profiles through keyword, menu, and data-driven search tools. Browser search functions can predict the regulators of query genes as well as the cell type and factor dependent functionality of potential cis-regulatory elements. Cistrome DB v3.0 expands the display of quality control statistics, incorporates sequence logos into motif enrichment displays and includes more expansive sample metadata. Cistrome DB v3.0 is available at http://db3.cistrome.org/browser.


Assuntos
Cromatina , Bases de Dados de Proteínas , Genômica , Software , Animais , Humanos , Camundongos , Cromatina/genética , Histonas/genética , Histonas/metabolismo , Análise de Sequência de DNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Visualização de Dados , Internet , Genômica/métodos
3.
Nat Methods ; 19(9): 1097-1108, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36068320

RESUMO

Rigorously comparing gene expression and chromatin accessibility in the same single cells could illuminate the logic of how coupling or decoupling of these mechanisms regulates fate commitment. Here we present MIRA, probabilistic multimodal models for integrated regulatory analysis, a comprehensive methodology that systematically contrasts transcription and accessibility to infer the regulatory circuitry driving cells along cell state trajectories. MIRA leverages topic modeling of cell states and regulatory potential modeling of individual gene loci. MIRA thereby represents cell states in an efficient and interpretable latent space, infers high-fidelity cell state trees, determines key regulators of fate decisions at branch points and exposes the variable influence of local accessibility on transcription at distinct loci. Applied to epidermal differentiation and embryonic brain development from two different multimodal platforms, MIRA revealed that early developmental genes were tightly regulated by local chromatin landscape whereas terminal fate genes were titrated without requiring extensive chromatin remodeling.


Assuntos
Cromatina , Regulação da Expressão Gênica no Desenvolvimento , Diferenciação Celular/genética , Cromatina/genética , Desenvolvimento Embrionário/genética
4.
Bioinformatics ; 39(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36688700

RESUMO

SUMMARY: The regulation of genes by cis-regulatory elements (CREs) is complex and differs between cell types. Visual analysis of large collections of chromatin profiles across diverse cell types, integrated with computational methods, can reveal meaningful biological insights. We developed Cistrome Explorer, a web-based interactive visual analytics tool for exploring thousands of chromatin profiles in diverse cell types. Integrated with the Cistrome Data Browser database which contains thousands of ChIP-seq, DNase-seq and ATAC-seq samples, Cistrome Explorer enables the discovery of patterns of CREs across cell types and the identification of transcription factor binding underlying these patterns. AVAILABILITY AND IMPLEMENTATION: Cistrome Explorer and its source code are available at http://cisvis.gehlenborglab.org/ and released under the MIT License. Documentation can be accessed via http://cisvis.gehlenborglab.org/docs/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Cromatina , Epigenômica , Análise de Sequência de DNA , Sequenciamento de Cromatina por Imunoprecipitação , Software , Bases de Dados Genéticas
5.
Cell ; 138(2): 245-56, 2009 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-19632176

RESUMO

The evolution of prostate cancer from an androgen-dependent state to one that is androgen-independent marks its lethal progression. The androgen receptor (AR) is essential in both, though its function in androgen-independent cancers is poorly understood. We have defined the direct AR-dependent target genes in both androgen-dependent and -independent cancer cells by generating AR-dependent gene expression profiles and AR cistromes. In contrast to what is found in androgen-dependent cells, AR selectively upregulates M-phase cell-cycle genes in androgen-independent cells, including UBE2C, a gene that inactivates the M-phase checkpoint. We find that epigenetic marks at the UBE2C enhancer, notably histone H3K4 methylation and FoxA1 transcription factor binding, are present in androgen-independent cells and direct AR-enhancer binding and UBE2C activation. Thus, the role of AR in androgen-independent cancer cells is not to direct the androgen-dependent gene expression program without androgen, but rather to execute a distinct program resulting in androgen-independent growth.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Androgênios/metabolismo , Divisão Celular , Linhagem Celular Tumoral , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Histonas/metabolismo , Humanos , Masculino , Neoplasias da Próstata/genética , Ativação Transcricional , Enzimas de Conjugação de Ubiquitina/metabolismo
6.
Cell ; 132(6): 958-70, 2008 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-18358809

RESUMO

Complex organisms require tissue-specific transcriptional programs, yet little is known about how these are established. The transcription factor FoxA1 is thought to contribute to gene regulation through its ability to act as a pioneer factor binding to nucleosomal DNA. Through genome-wide positional analyses, we demonstrate that FoxA1 cell type-specific functions rely primarily on differential recruitment to chromatin predominantly at distant enhancers rather than proximal promoters. This differential recruitment leads to cell type-specific changes in chromatin structure and functional collaboration with lineage-specific transcription factors. Despite the ability of FoxA1 to bind nucleosomes, its differential binding to chromatin sites is dependent on the distribution of histone H3 lysine 4 dimethylation. Together, our results suggest that methylation of histone H3 lysine 4 is part of the epigenetic signature that defines lineage-specific FoxA1 recruitment sites in chromatin. FoxA1 translates this epigenetic signature into changes in chromatin structure thereby establishing lineage-specific transcriptional enhancers and programs.


Assuntos
Elementos Facilitadores Genéticos , Epigênese Genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Transcrição Gênica , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , Imunoprecipitação da Cromatina , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Genoma Humano , Código das Histonas , Histonas/metabolismo , Humanos , Metilação , Receptores Androgênicos/metabolismo
7.
Nature ; 529(7586): 413-417, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26735014

RESUMO

Triple-negative breast cancer (TNBC) is a heterogeneous and clinically aggressive disease for which there is no targeted therapy. BET bromodomain inhibitors, which have shown efficacy in several models of cancer, have not been evaluated in TNBC. These inhibitors displace BET bromodomain proteins such as BRD4 from chromatin by competing with their acetyl-lysine recognition modules, leading to inhibition of oncogenic transcriptional programs. Here we report the preferential sensitivity of TNBCs to BET bromodomain inhibition in vitro and in vivo, establishing a rationale for clinical investigation and further motivation to understand mechanisms of resistance. In paired cell lines selected for acquired resistance to BET inhibition from previously sensitive TNBCs, we failed to identify gatekeeper mutations, new driver events or drug pump activation. BET-resistant TNBC cells remain dependent on wild-type BRD4, which supports transcription and cell proliferation in a bromodomain-independent manner. Proteomic studies of resistant TNBC identify strong association with MED1 and hyper-phosphorylation of BRD4 attributable to decreased activity of PP2A, identified here as a principal BRD4 serine phosphatase. Together, these studies provide a rationale for BET inhibition in TNBC and present mechanism-based combination strategies to anticipate clinical drug resistance.


Assuntos
Azepinas/farmacologia , Azepinas/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas Nucleares/antagonistas & inibidores , Estrutura Terciária de Proteína/efeitos dos fármacos , Fatores de Transcrição/antagonistas & inibidores , Triazóis/farmacologia , Triazóis/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Ligação Competitiva/efeitos dos fármacos , Caseína Quinase II/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Cromatina/genética , Cromatina/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genoma Humano/efeitos dos fármacos , Genoma Humano/genética , Humanos , Subunidade 1 do Complexo Mediador/metabolismo , Camundongos , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteína Fosfatase 2/metabolismo , Proteômica , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Nucleic Acids Res ; 47(W1): W206-W211, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31053864

RESUMO

Characterizing the ontologies of genes directly regulated by a transcription factor (TF), can help to elucidate the TF's biological role. Previously, we developed a widely used method, BETA, to integrate TF ChIP-seq peaks with differential gene expression (DGE) data to infer direct target genes. Here, we provide Cistrome-GO, a website implementation of this method with enhanced features to conduct ontology analyses of gene regulation by TFs in human and mouse. Cistrome-GO has two working modes: solo mode for ChIP-seq peak analysis; and ensemble mode, which integrates ChIP-seq peaks with DGE data. Cistrome-GO is freely available at http://go.cistrome.org/.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Regulação da Expressão Gênica , Software , Fatores de Transcrição/fisiologia , Animais , Sequenciamento de Cromatina por Imunoprecipitação/métodos , Humanos , Camundongos
9.
Nucleic Acids Res ; 47(D1): D729-D735, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30462313

RESUMO

The Cistrome Data Browser (DB) is a resource of human and mouse cis-regulatory information derived from ChIP-seq, DNase-seq and ATAC-seq chromatin profiling assays, which map the genome-wide locations of transcription factor binding sites, histone post-translational modifications and regions of chromatin accessible to endonuclease activity. Currently, the Cistrome DB contains approximately 47,000 human and mouse samples with about 24,000 newly collected datasets compared to the previous release two years ago. Furthermore, the Cistrome DB has a new Toolkit module with several features that allow users to better utilize the large-scale ChIP-seq, DNase-seq, and ATAC-seq data. First, users can query the factors which are likely to regulate a specific gene of interest. Second, the Cistrome DB Toolkit facilitates searches for factor binding, histone modifications, and chromatin accessibility in any given genomic interval shorter than 2Mb. Third, the Toolkit can determine the most similar ChIP-seq, DNase-seq, and ATAC-seq samples in terms of genomic interval overlaps with user-provided genomic interval sets. The Cistrome DB is a user-friendly, up-to-date, and well maintained resource, and the new tools will greatly benefit the biomedical research community. The database is freely available at http://cistrome.org/db, and the Toolkit is at http://dbtoolkit.cistrome.org.


Assuntos
Bases de Dados Genéticas , Sequências Reguladoras de Ácido Nucleico , Análise de Sequência de DNA/métodos , Software , Animais , Montagem e Desmontagem da Cromatina , Código das Histonas , Humanos , Camundongos , Fatores de Transcrição/metabolismo
10.
Nat Rev Genet ; 15(11): 709-21, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25223782

RESUMO

Next-generation sequencing (NGS) technologies have been used in diverse ways to investigate various aspects of chromatin biology by identifying genomic loci that are bound by transcription factors, occupied by nucleosomes or accessible to nuclease cleavage, or loci that physically interact with remote genomic loci. However, reaching sound biological conclusions from such NGS enrichment profiles requires many potential biases to be taken into account. In this Review, we discuss common ways in which biases may be introduced into NGS chromatin profiling data, approaches to diagnose these biases and analytical techniques to mitigate their effect.


Assuntos
Cromatina/genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Artefatos , Viés , Imunoprecipitação da Cromatina/métodos , Loci Gênicos/genética , Análise de Sequência de DNA/métodos
12.
Genome Res ; 26(10): 1417-1429, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27466232

RESUMO

Model-based analysis of regulation of gene expression (MARGE) is a framework for interpreting the relationship between the H3K27ac chromatin environment and differentially expressed gene sets. The framework has three main functions: MARGE-potential, MARGE-express, and MARGE-cistrome. MARGE-potential defines a regulatory potential (RP) for each gene as the sum of H3K27ac ChIP-seq signals weighted by a function of genomic distance from the transcription start site. The MARGE framework includes a compendium of RPs derived from 365 human and 267 mouse H3K27ac ChIP-seq data sets. Relative RPs, scaled using this compendium, are superior to superenhancers in predicting BET (bromodomain and extraterminal domain) -inhibitor repressed genes. MARGE-express, which uses logistic regression to retrieve relevant H3K27ac profiles from the compendium to accurately model a query set of differentially expressed genes, was tested on 671 diverse gene sets from MSigDB. MARGE-cistrome adopts a novel semisupervised learning approach to identify cis-regulatory elements regulating a gene set. MARGE-cistrome exploits information from H3K27ac signal at DNase I hypersensitive sites identified from published human and mouse DNase-seq data. We tested the framework on newly generated RNA-seq and H3K27ac ChIP-seq profiles upon siRNA silencing of multiple transcriptional and epigenetic regulators in a prostate cancer cell line, LNCaP-abl. MARGE-cistrome can predict the binding sites of silenced transcription factors without matched H3K27ac ChIP-seq data. Even when the matching H3K27ac ChIP-seq profiles are available, MARGE leverages public H3K27ac profiles to enhance these data. This study demonstrates the advantage of integrating a large compendium of historical epigenetic data for genomic studies of transcriptional regulation.


Assuntos
Código das Histonas , Histonas/metabolismo , Modelos Genéticos , Acetilação , Animais , Linhagem Celular Tumoral , Epigênese Genética , Genoma Humano , Histonas/genética , Humanos , Camundongos
13.
Bioinformatics ; 34(23): 4095-4101, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29868757

RESUMO

Motivation: Genome-wide clustered, regularly interspaced, short palindromic repeat (CRISPR)-Cas9 screen has been widely used to interrogate gene functions. However, the rules to design better libraries beg further refinement. Results: We found single guide RNA (sgRNA) outliers are characterized by higher G-nucleotide counts, especially in regions distal from the PAM motif and are associated with stronger off-target activities. Furthermore, using non-targeting sgRNAs as negative controls lead to strong bias, which can be mitigated by using sgRNAs targeting multiple 'safe harbor' regions. Custom-designed screens confirmed our findings and further revealed that 19 nt sgRNAs consistently gave the best signal-to-noise ratio. Collectively, our analysis motivated the design of a new genome-wide CRISPR/Cas9 screen library and uncovered some intriguing properties of the CRISPR-Cas9 system. Availability and implementation: The MAGeCK workflow is available open source at https://bitbucket.org/liulab/mageck_nest under the MIT license. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Sistemas CRISPR-Cas , Biblioteca Gênica , RNA Guia de Cinetoplastídeos/genética , Biologia Computacional , Genoma
14.
Nucleic Acids Res ; 45(D1): D658-D662, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27789702

RESUMO

Chromatin immunoprecipitation, DNase I hypersensitivity and transposase-accessibility assays combined with high-throughput sequencing enable the genome-wide study of chromatin dynamics, transcription factor binding and gene regulation. Although rapidly accumulating publicly available ChIP-seq, DNase-seq and ATAC-seq data are a valuable resource for the systematic investigation of gene regulation processes, a lack of standardized curation, quality control and analysis procedures have hindered extensive reuse of these data. To overcome this challenge, we built the Cistrome database, a collection of ChIP-seq and chromatin accessibility data (DNase-seq and ATAC-seq) published before January 1, 2016, including 13 366 human and 9953 mouse samples. All the data have been carefully curated and processed with a streamlined analysis pipeline and evaluated with comprehensive quality control metrics. We have also created a user-friendly web server for data query, exploration and visualization. The resulting Cistrome DB (Cistrome Data Browser), available online at http://cistrome.org/db, is expected to become a valuable resource for transcriptional and epigenetic regulation studies.


Assuntos
Montagem e Desmontagem da Cromatina , Imunoprecipitação da Cromatina , Bases de Dados Genéticas , Sequenciamento de Nucleotídeos em Larga Escala , Navegador , Animais , Epigênese Genética , Epigenômica/métodos , Regulação da Expressão Gênica , Genômica/métodos , Humanos , Camundongos
15.
Genome Res ; 25(8): 1147-57, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26063738

RESUMO

The CRISPR/Cas9 system has revolutionized mammalian somatic cell genetics. Genome-wide functional screens using CRISPR/Cas9-mediated knockout or dCas9 fusion-mediated inhibition/activation (CRISPRi/a) are powerful techniques for discovering phenotype-associated gene function. We systematically assessed the DNA sequence features that contribute to single guide RNA (sgRNA) efficiency in CRISPR-based screens. Leveraging the information from multiple designs, we derived a new sequence model for predicting sgRNA efficiency in CRISPR/Cas9 knockout experiments. Our model confirmed known features and suggested new features including a preference for cytosine at the cleavage site. The model was experimentally validated for sgRNA-mediated mutation rate and protein knockout efficiency. Tested on independent data sets, the model achieved significant results in both positive and negative selection conditions and outperformed existing models. We also found that the sequence preference for CRISPRi/a is substantially different from that for CRISPR/Cas9 knockout and propose a new model for predicting sgRNA efficiency in CRISPRi/a experiments. These results facilitate the genome-wide design of improved sgRNA for both knockout and CRISPRi/a studies.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Biologia Computacional/métodos , RNA Guia de Cinetoplastídeos/metabolismo , DNA/análise , Técnicas de Inativação de Genes , Células HL-60 , Humanos , Modelos Genéticos , Taxa de Mutação
16.
Genes Dev ; 24(19): 2219-27, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20889718

RESUMO

Estrogen receptor α (ERα) expression in breast cancer is predictive of response to endocrine therapy; however, resistance is common in ERα-positive tumors that overexpress the growth factor receptor ERBB2. Even in the absence of estrogen, ERα can be activated by growth factors, including the epidermal growth factor (EGF). EGF induces a transcriptional program distinct from estrogen; however, the mechanism of the stimulus-specific response is unknown. Here we show that the EGF-induced ERα genomic targets, its cistromes, are distinct from those induced by estrogen in a process dependent on the transcription factor AP-1. The EGF-induced ERα cistrome specifically regulates genes found overexpressed in ERBB2-positive human breast cancers. This provides a potential molecular explanation for the endocrine therapy resistance seen in ERα-positive breast cancers that overexpress ERBB2. These results suggest a central role for ERα in hormone-refractory breast tumors dependent on growth factor pathway activation and favors the development of therapeutic strategies completely antagonizing ERα, as opposed to blocking its estrogen responsiveness alone.


Assuntos
Neoplasias da Mama/fisiopatologia , Resistencia a Medicamentos Antineoplásicos/genética , Fator de Crescimento Epidérmico/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Feminino , Humanos , Receptor ErbB-2/metabolismo
17.
Nat Methods ; 11(1): 73-78, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24317252

RESUMO

Sequencing of DNase I hypersensitive sites (DNase-seq) is a powerful technique for identifying cis-regulatory elements across the genome. We studied the key experimental parameters to optimize performance of DNase-seq. Sequencing short fragments of 50-100 base pairs (bp) that accumulate in long internucleosome linker regions was more efficient for identifying transcription factor binding sites compared to sequencing longer fragments. We also assessed the potential of DNase-seq to predict transcription factor occupancy via generation of nucleotide-resolution transcription factor footprints. In modeling the sequence-specific DNase I cutting bias, we found a strong effect that varied over more than two orders of magnitude. This indicates that the nucleotide-resolution cleavage patterns at many transcription factor binding sites are derived from intrinsic DNase I cleavage bias rather than from specific protein-DNA interactions. In contrast, quantitative comparison of DNase I hypersensitivity between states can predict transcription factor occupancy associated with particular biological perturbations.


Assuntos
Desoxirribonuclease I/química , Redes Reguladoras de Genes , Análise de Sequência de DNA/métodos , Fatores de Transcrição/química , Motivos de Aminoácidos , Sítios de Ligação , Linhagem Celular Tumoral , Cromatina/química , Feminino , Regulação da Expressão Gênica , Humanos , Células K562 , Células MCF-7 , Masculino , Nucleossomos/química , Nucleotídeos/química , Receptores Androgênicos/química , Proteína Supressora de Tumor p53/química
18.
BMC Bioinformatics ; 17(1): 404, 2016 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-27716038

RESUMO

BACKGROUND: Transcription factor binding, histone modification, and chromatin accessibility studies are important approaches to understanding the biology of gene regulation. ChIP-seq and DNase-seq have become the standard techniques for studying protein-DNA interactions and chromatin accessibility respectively, and comprehensive quality control (QC) and analysis tools are critical to extracting the most value from these assay types. Although many analysis and QC tools have been reported, few combine ChIP-seq and DNase-seq data analysis and quality control in a unified framework with a comprehensive and unbiased reference of data quality metrics. RESULTS: ChiLin is a computational pipeline that automates the quality control and data analyses of ChIP-seq and DNase-seq data. It is developed using a flexible and modular software framework that can be easily extended and modified. ChiLin is ideal for batch processing of many datasets and is well suited for large collaborative projects involving ChIP-seq and DNase-seq from different designs. ChiLin generates comprehensive quality control reports that include comparisons with historical data derived from over 23,677 public ChIP-seq and DNase-seq samples (11,265 datasets) from eight literature-based classified categories. To the best of our knowledge, this atlas represents the most comprehensive ChIP-seq and DNase-seq related quality metric resource currently available. These historical metrics provide useful heuristic quality references for experiment across all commonly used assay types. Using representative datasets, we demonstrate the versatility of the pipeline by applying it to different assay types of ChIP-seq data. The pipeline software is available open source at https://github.com/cfce/chilin . CONCLUSION: ChiLin is a scalable and powerful tool to process large batches of ChIP-seq and DNase-seq datasets. The analysis output and quality metrics have been structured into user-friendly directories and reports. We have successfully compiled 23,677 profiles into a comprehensive quality atlas with fine classification for users.


Assuntos
Imunoprecipitação da Cromatina/métodos , Desoxirribonucleases/genética , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Controle de Qualidade , Análise de Sequência de DNA/métodos , Software , Mapeamento Cromossômico , Interpretação Estatística de Dados , Bases de Dados Genéticas , Desoxirribonucleases/metabolismo , Humanos
19.
Nature ; 463(7279): 374-8, 2010 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-20090754

RESUMO

Cyclin D1 belongs to the core cell cycle machinery, and it is frequently overexpressed in human cancers. The full repertoire of cyclin D1 functions in normal development and oncogenesis is unclear at present. Here we developed Flag- and haemagglutinin-tagged cyclin D1 knock-in mouse strains that allowed a high-throughput mass spectrometry approach to search for cyclin D1-binding proteins in different mouse organs. In addition to cell cycle partners, we observed several proteins involved in transcription. Genome-wide location analyses (chromatin immunoprecipitation coupled to DNA microarray; ChIP-chip) showed that during mouse development cyclin D1 occupies promoters of abundantly expressed genes. In particular, we found that in developing mouse retinas-an organ that critically requires cyclin D1 function-cyclin D1 binds the upstream regulatory region of the Notch1 gene, where it serves to recruit CREB binding protein (CBP) histone acetyltransferase. Genetic ablation of cyclin D1 resulted in decreased CBP recruitment, decreased histone acetylation of the Notch1 promoter region, and led to decreased levels of the Notch1 transcript and protein in cyclin D1-null (Ccnd1(-/-)) retinas. Transduction of an activated allele of Notch1 into Ccnd1(-/-) retinas increased proliferation of retinal progenitor cells, indicating that upregulation of Notch1 signalling alleviates the phenotype of cyclin D1-deficiency. These studies show that in addition to its well-established cell cycle roles, cyclin D1 has an in vivo transcriptional function in mouse development. Our approach, which we term 'genetic-proteomic', can be used to study the in vivo function of essentially any protein.


Assuntos
Ciclina D1/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteômica , Transcrição Gênica , Alelos , Animais , Proteína de Ligação a CREB/metabolismo , Imunoprecipitação da Cromatina , Ciclina D1/deficiência , Ciclina D1/genética , Genoma/genética , Ensaios de Triagem em Larga Escala , Histona Acetiltransferases/metabolismo , Espectrometria de Massas , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteômica/métodos , Ratos , Receptor Notch1/genética , Receptor Notch1/metabolismo , Retina/citologia , Retina/embriologia , Retina/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo
20.
Genome Res ; 22(6): 1015-25, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22508765

RESUMO

Transcription factor cistromes are highly cell-type specific. Chromatin accessibility, histone modifications, and nucleosome occupancy have all been found to play a role in defining these binding locations. Here, we show that hormone-induced DNase I hypersensitivity changes (ΔDHS) are highly predictive of androgen receptor (AR) and estrogen receptor 1 (ESR1) binding in prostate cancer and breast cancer cells, respectively. While chromatin structure prior to receptor binding and nucleosome occupancy after binding are strikingly different for ESR1 and AR, ΔDHS is highly predictive for both. AR binding is associated with changes in both local nucleosome occupancy and DNase I hypersensitivity. In contrast, while global ESR1 binding is unrelated to changes in nucleosome occupancy, DNase I hypersensitivity dynamics are also predictive of the ESR1 cistrome. These findings suggest that AR and ESR1 have distinct modes of interaction with chromatin and that DNase I hypersensitivity dynamics provides a general approach for predicting cell-type specific cistromes.


Assuntos
Cromatina/metabolismo , Desoxirribonuclease I/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptores Androgênicos/metabolismo , Sítios de Ligação , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Estrogênios/metabolismo , Estrogênios/farmacologia , Feminino , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Humanos , Masculino , Coativador 3 de Receptor Nuclear/metabolismo , Nucleossomos/metabolismo , Valor Preditivo dos Testes , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA