Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 23(11): 6503-6519, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34327792

RESUMO

Global warming and eutrophication contribute to the worldwide increase in cyanobacterial blooms, and the level of cyanobacterial biomass is strongly associated with rises in methane emissions from surface lake waters. Hence, methane-metabolizing microorganisms may be important for modulating carbon flow in cyanobacterial blooms. Here, we surveyed methanogenic and methanotrophic communities associated with floating Microcystis aggregates in 10 lakes spanning four continents, through sequencing of 16S rRNA and functional marker genes. Methanogenic archaea (mainly Methanoregula and Methanosaeta) were detectable in 5 of the 10 lakes and constituted the majority (~50%-90%) of the archaeal community in these lakes. Three of the 10 lakes contained relatively more abundant methanotrophs than the other seven lakes, with the methanotrophic genera Methyloparacoccus, Crenothrix, and an uncultured species related to Methylobacter dominating and nearly exclusively found in each of those three lakes. These three are among the five lakes in which methanogens were observed. Operational taxonomic unit (OTU) richness and abundance of methanotrophs were strongly positively correlated with those of methanogens, suggesting that their activities may be coupled. These Microcystis-aggregate-associated methanotrophs may be responsible for a hitherto overlooked sink for methane in surface freshwaters, and their co-occurrence with methanogens sheds light on the methane cycle in cyanobacterial aggregates.


Assuntos
Euryarchaeota , Microcystis , Archaea/genética , Euryarchaeota/genética , Eutrofização , Lagos/microbiologia , Metano , Microcystis/genética , RNA Ribossômico 16S/genética
2.
Ecography ; 44(10): 1511-1523, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34720401

RESUMO

The current erosion of biodiversity is a major concern that threatens the ecological integrity of ecosystems and the ecosystem services they provide. Due to global change, an increasing proportion of river networks are drying and changes from perennial to non-perennial flow regimes represent dramatic ecological shifts with potentially irreversible alterations of community and ecosystem dynamics. However, there is minimal understanding of how biological communities respond functionally to drying. Here, we highlight the taxonomic and functional responses of aquatic macroinvertebrate communities to flow intermittence across river networks from three continents, to test predictions from underlying trait-based conceptual theory. We found a significant breakpoint in the relationship between taxonomic and functional richness, indicating higher functional redundancy at sites with flow intermittence higher than 28%. Multiple strands of evidence, including patterns of alpha and beta diversity and functional group membership, indicated that functional redundancy did not compensate for biodiversity loss associated with increasing intermittence, contrary to received wisdom. A specific set of functional trait modalities, including small body size, short life span and high fecundity, were selected with increasing flow intermittence. These results demonstrate the functional responses of river communities to drying and suggest that on-going biodiversity reduction due to global change in drying river networks is threatening their functional integrity. These results indicate that such patterns might be common in these ecosystems, even where drying is considered a predictable disturbance. This highlights the need for the conservation of natural drying regimes of intermittent rivers to secure their ecological integrity.

3.
Limnol Oceanogr ; 65(Suppl 1): S194-S207, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32051648

RESUMO

Bacteria play key roles in the function and diversity of aquatic systems, but aside from study of specific bloom systems, little is known about the diversity or biogeography of bacteria associated with harmful cyanobacterial blooms (cyanoHABs). CyanoHAB species are known to shape bacterial community composition and to rely on functions provided by the associated bacteria, leading to the hypothesized cyanoHAB interactome, a coevolved community of synergistic and interacting bacteria species, each necessary for the success of the others. Here, we surveyed the microbiome associated with Microcystis aeruginosa during blooms in 12 lakes spanning four continents as an initial test of the hypothesized Microcystis interactome. We predicted that microbiome composition and functional potential would be similar across blooms globally. Our results, as revealed by 16S rRNA sequence similarity, indicate that M. aeruginosa is cosmopolitan in lakes across a 280° longitudinal and 90° latitudinal gradient. The microbiome communities were represented by a wide range of operational taxonomic units and relative abundances. Highly abundant taxa were more related and shared across most sites and did not vary with geographic distance, thus, like Microcystis, revealing no evidence for dispersal limitation. High phylogenetic relatedness, both within and across lakes, indicates that microbiome bacteria with similar functional potential were associated with all blooms. While Microcystis and the microbiome bacteria shared many genes, whole-community metagenomic analysis revealed a suite of biochemical pathways that could be considered complementary. Our results demonstrate a high degree of similarity across global Microcystis blooms, thereby providing initial support for the hypothesized Microcystis interactome.

4.
Microbiologyopen ; 8(4): e00681, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30006971

RESUMO

Modern agricultural practices have undeniably increased global food production. On the other hand, agricultural practices not only lead to a degradation of natural ecosystems but also affect the functioning of ecosystems and the related services they provide. Even though impacts of anthropogenic activities vary across ecosystems, freshwater ecosystems are among those affected to a higher degree. In comparison to surface water ecosystems, groundwater ecosystems are less affected by anthropogenic pollutants, as the overlaying soil retains organic and inorganic substances. However, it has become evident that the excessive use of fertilizers has led to the eutrophication of many aquifers. Bacterial communities, which significantly contribute to the cycling of matter due to their metabolic capacities, are prone to environmental perturbations, and structural variation of bacterial communities may consequently affect the functioning of groundwater ecosystems. Our present paper intends to evaluate the impact of anthropogenic activities on environmental conditions as well as on the structural properties of bacterial communities in groundwater. We repeatedly sampled emerging groundwater at five spring sites belonging to different catchments and determined the concentration of abiotic variables as well as the diversity and composition of bacterial communities on a local scale. We hypothesized that anthropogenic activities influence the concentration of abiotic variables, especially of nitrate, as well as the composition and diversity of bacterial communities in groundwater. Our results show that underground spring catchment areas only slightly differ regarding the concentration of abiotic variables as well as the structure of bacterial communities. Furthermore, abiotic variables, presumably influenced by anthropogenic activities, do not correlate with the diversity and composition of bacterial communities. Although supported only by circumstantial evidence, we suggest that upwelling groundwater from the deeper aquifer affects the diversity and composition of bacterial communities, and we argue that bacterial communities act as useful indicators for environmental changes.


Assuntos
Bactérias/isolamento & purificação , Biodiversidade , Água Subterrânea/microbiologia , Agricultura , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Ecossistema , Água Subterrânea/química , Nitratos/metabolismo , Filogenia , Qualidade da Água
5.
Mol Ecol Resour ; 11(1): 219-22, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21429127

RESUMO

This article documents the addition of 229 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Acacia auriculiformis × Acacia mangium hybrid, Alabama argillacea, Anoplopoma fimbria, Aplochiton zebra, Brevicoryne brassicae, Bruguiera gymnorhiza, Bucorvus leadbeateri, Delphacodes detecta, Tumidagena minuta, Dictyostelium giganteum, Echinogammarus berilloni, Epimedium sagittatum, Fraxinus excelsior, Labeo chrysophekadion, Oncorhynchus clarki lewisi, Paratrechina longicornis, Phaeocystis antarctica, Pinus roxburghii and Potamilus capax. These loci were cross-tested on the following species: Acacia peregrinalis, Acacia crassicarpa, Bruguiera cylindrica, Delphacodes detecta, Tumidagena minuta, Dictyostelium macrocephalum, Dictyostelium discoideum, Dictyostelium purpureum, Dictyostelium mucoroides, Dictyostelium rosarium, Polysphondylium pallidum, Epimedium brevicornum, Epimedium koreanum, Epimedium pubescens, Epimedium wushanese and Fraxinus angustifolia.


Assuntos
Bases de Dados de Ácidos Nucleicos , Dictyostelium/genética , Epimedium/genética , Haptófitas/genética , Repetições de Microssatélites , Dados de Sequência Molecular
6.
Environ Manage ; 37(2): 247-57, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16391966

RESUMO

A straightened stream stretch with poor habitat heterogeneity was divided into a "control" section with a low amount of submerged woody debris and an experimentally "wood-enriched" downstream section to study the effect of enhanced habitat diversity on the benthic invertebrate community. The downstream section was enriched by fixing 25 wood packages constructed from 9-10 branches on the stream bottom. Succession processes occurring in the two stream sections were compared by chironomid exuviae drift from July to November 2000 and from April to August 2001. During the first sampling period, more drifting chironomid exuviae (medians of control vs. wood-enriched: 446 vs. 331, no significant difference) and total number of taxa (44 vs. 36, Wilcoxon signed-rank test P = 0.019) were recorded for the control section. Although species compositions of both stream sections were highly similar (Sørensen index: 0.83) the diversity in the wood-enriched section was distinctly lower compared to the control section (Shannon-Weaver index: 1.19 vs. 1.50). During the second sampling period, exuviae numbers remained higher in the control section (median: 326 vs. 166), but total numbers of taxa were nearly equal (51 vs. 49), as well as species diversity (Shannon-Weaver index: 1.67 vs. 1.64). The lower chironomid diversity observed during the first sampling period coincided with a gradual but significant change of the streambed morphology in the wood-enriched section. There, the initially more U-shaped profile (V/U = 0.81 +/- 0.37) had turned into a pronounced V shape (V/U = 1.14 +/- 0.21), whereas the control section retained its unaltered U shape (V/U = 0.62-0.75). This small-scale study on experimental of woody debris in sandy lowland streams showed that the negative impact of increased hydraulic disturbance of the existing streambed more than outweighed any positive impact resulting from the increase in woody debris.


Assuntos
Chironomidae/classificação , Conservação dos Recursos Naturais , Madeira , Animais , Biodiversidade , Meio Ambiente , Monitoramento Ambiental , Sedimentos Geológicos , Larva , Rios , Árvores , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA