Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 117(2): 025001, 2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-27447511

RESUMO

A record fuel hot-spot pressure P_{hs}=56±7 Gbar was inferred from x-ray and nuclear diagnostics for direct-drive inertial confinement fusion cryogenic, layered deuterium-tritium implosions on the 60-beam, 30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National Ignition Facility, these implosions achieved a Lawson parameter ∼60% of the value required for ignition [A. Bose et al., Phys. Rev. E 93, 011201(R) (2016)], similar to indirect-drive implosions [R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015)], and nearly half of the direct-drive ignition-threshold pressure. Relative to symmetric, one-dimensional simulations, the inferred hot-spot pressure is approximately 40% lower. Three-dimensional simulations suggest that low-mode distortion of the hot spot seeded by laser-drive nonuniformity and target-positioning error reduces target performance.

2.
Phys Rev Lett ; 114(15): 155002, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25933317

RESUMO

Measurements of the conduction-zone length (110±20 µm at t=2.8 ns), the averaged mass ablation rate of the deuterated plastic (7.95±0.3 µg/ns), shell trajectory, and laser absorption are made in direct-drive cryogenic implosions and are used to quantify the electron thermal transport through the conduction zone. Hydrodynamic simulations that use nonlocal thermal transport and cross-beam energy transfer models reproduce these experimental observables. Hydrodynamic simulations that use a time-dependent flux-limited model reproduce the measured shell trajectory and the laser absorption but underestimate the mass ablation rate by ∼10% and the length of the conduction zone by nearly a factor of 2.

3.
Phys Rev Lett ; 114(21): 215003, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-26066442

RESUMO

The magnetic fields generated at the surface of a laser-irradiated planar solid target are mapped using ultrafast proton radiography. Thick (50 µm) plastic foils are irradiated with 4-kJ, 2.5-ns laser pulses focused to an intensity of 4×10^{14} W/cm^{2}. The data show magnetic fields concentrated at the edge of the laser-focal region, well within the expanding coronal plasma. The magnetic-field spatial distribution is tracked and shows good agreement with 2D resistive magnetohydrodynamic simulations using the code draco when the Biermann battery source, fluid and Nernst advection, resistive magnetic diffusion, and Righi-Leduc heat flow are included.

4.
Phys Rev Lett ; 114(21): 215001, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-26066440

RESUMO

We report new experimental results obtained on three different laser facilities that show directed laser-driven relativistic electron-positron jets with up to 30 times larger yields than previously obtained and a quadratic (∼E_{L}^{2}) dependence of the positron yield on the laser energy. This favorable scaling stems from a combination of higher energy electrons due to increased laser intensity and the recirculation of MeV electrons in the mm-thick target. Based on this scaling, first principles simulations predict the possibility of using such electron-positron jets, produced at upcoming high-energy laser facilities, to probe the physics of relativistic collisionless shocks in the laboratory.

5.
Phys Rev Lett ; 114(2): 025001, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25635549

RESUMO

Anomalous reduction of the fusion yields by 50% and anomalous scaling of the burn-averaged ion temperatures with the ion-species fraction has been observed for the first time in D^{3}He-filled shock-driven inertial confinement fusion implosions. Two ion kinetic mechanisms are used to explain the anomalous observations: thermal decoupling of the D and ^{3}He populations and diffusive species separation. The observed insensitivity of ion temperature to a varying deuterium fraction is shown to be a signature of ion thermal decoupling in shock-heated plasmas. The burn-averaged deuterium fraction calculated from the experimental data demonstrates a reduction in the average core deuterium density, as predicted by simulations that use a diffusion model. Accounting for each of these effects in simulations reproduces the observed yield trends.

6.
Phys Rev Lett ; 112(13): 135001, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24745431

RESUMO

A strong nonhydrodynamic mechanism generating atomic fuel-shell mix has been observed in strongly shocked inertial confinement fusion implosions of thin deuterated-plastic shells filled with 3He gas. These implosions were found to produce D3He-proton shock yields comparable to implosions of identical shells filled with a hydroequivalent 50∶50 D3He gas mixture. Standard hydrodynamic mixing cannot explain this observation, as hydrodynamic modeling including mix predicts a yield an order of magnitude lower than was observed. Instead, these results can be attributed to ion diffusive mix at the fuel-shell interface.

7.
Phys Rev Lett ; 112(18): 185001, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24856701

RESUMO

Clear evidence of the transition from hydrodynamiclike to strongly kinetic shock-driven implosions is, for the first time, revealed and quantitatively assessed. Implosions with a range of initial equimolar D3He gas densities show that as the density is decreased, hydrodynamic simulations strongly diverge from and increasingly overpredict the observed nuclear yields, from a factor of ∼2 at 3.1 mg/cm3 to a factor of 100 at 0.14 mg/cm3. (The corresponding Knudsen number, the ratio of ion mean-free path to minimum shell radius, varied from 0.3 to 9; similarly, the ratio of fusion burn duration to ion diffusion time, another figure of merit of kinetic effects, varied from 0.3 to 14.) This result is shown to be unrelated to the effects of hydrodynamic mix. As a first step to garner insight into this transition, a reduced ion kinetic (RIK) model that includes gradient-diffusion and loss-term approximations to several transport processes was implemented within the framework of a one-dimensional radiation-transport code. After empirical calibration, the RIK simulations reproduce the observed yield trends, largely as a result of ion diffusion and the depletion of the reacting tail ions.

8.
Phys Rev Lett ; 110(18): 185003, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23683208

RESUMO

Magnetic fields generated by the nonlinear Rayleigh-Taylor growth of laser-seeded three-dimensional broadband perturbations were measured in laser-accelerated planar targets using ultrafast proton radiography. The experimental data show self-similar behavior in the growing cellular magnetic field structures. These observations are consistent with a bubble competition and merger model that predicts the time evolution of the number and size of the bubbles, linking the cellular magnetic field structures with the Rayleigh-Taylor bubble and spike growth.

9.
Phys Rev Lett ; 110(14): 145001, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-25166997

RESUMO

Spherically symmetric direct-drive-ignition designs driven by laser beams with a focal-spot size nearly equal to the target diameter suffer from energy losses due to crossed-beam energy transfer (CBET). Significant reduction of CBET and improvements in implosion hydrodynamic efficiency can be achieved by reducing the beam diameter. Narrow beams increase low-mode perturbations of the targets because of decreased illumination uniformity that degrades implosion performance. Initiating an implosion with nominal beams (equal in size to the target diameter) and reducing the beam diameter by ∼ 30%-40% after developing a sufficiently thick target corona, which smooths the perturbations, mitigate CBET while maintaining low-mode target uniformity in ignition designs with a fusion gain ≫ 1.

10.
Phys Rev Lett ; 111(23): 235003, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24476281

RESUMO

Monoenergetic-proton radiographs of laser-generated, high-Mach-number plasma jets colliding at various angles shed light on the structures and dynamics of these collisions. The observations compare favorably with results from 2D hydrodynamic simulations of multistream plasma jets, and also with results from an analytic treatment of electron flow and magnetic field advection. In collisions of two noncollinear jets, the observed flow structure is similar to the analytic model's prediction of a characteristic feature with a narrow structure pointing in one direction and a much thicker one pointing in the opposite direction. Spontaneous magnetic fields, largely azimuthal around the colliding jets and generated by the well-known ∇T(e)×∇n(e) Biermann battery effect near the periphery of the laser spots, are demonstrated to be "frozen in" the plasma (due to high magnetic Reynolds number Re(M)∼5×10(4)) and advected along the jet streamlines of the electron flow. These studies provide novel insight into the interactions and dynamics of colliding plasma jets.

11.
Phys Rev Lett ; 111(4): 045001, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23931375

RESUMO

Mixing of plastic ablator material, doped with Cu and Ge dopants, deep into the hot spot of ignition-scale inertial confinement fusion implosions by hydrodynamic instabilities is diagnosed with x-ray spectroscopy on the National Ignition Facility. The amount of hot-spot mix mass is determined from the absolute brightness of the emergent Cu and Ge K-shell emission. The Cu and Ge dopants placed at different radial locations in the plastic ablator show the ablation-front hydrodynamic instability is primarily responsible for hot-spot mix. Low neutron yields and hot-spot mix mass between 34(-13,+50) ng and 4000(-2970,+17 160) ng are observed.

12.
Rev Sci Instrum ; 94(2): 023502, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36858999

RESUMO

The goal of the Xflows experimental campaign is to study the radiation flow on the National Ignition Facility (NIF) reproducing the sensitivity of the temperature (±8 eV, ±23 µm) and density (±11 mg/cc) measurements of the COAX platform [Johns et al., High Energy Density Phys. 39, 100939 (2021); Fryer et al., High Energy Density Phys. 35, 100738 (2020); and Coffing et al., Phys. Plasmas 29, 083302 (2022)]. This new platform will enable future astrophysical experiments involving supernova shock breakout, such as Radishock (Johns et al., Laboratory for Laser Energetics Annual Report 338, 2020) on OMEGA-60 [Boehly et al., Rev. Sci. Instrum. 66, 508 (1995)], and stochastic media (such as XFOL on OMEGA). Greater energy and larger physical scale on NIF [Moses et al., Eur. Phys. J. D 44, 215 (2007)] will enable a greater travel distance of radiation flow, higher density, and more manufacturable foams and enable exploration of a greater range of radiation behavior than achievable in the prior OMEGA experiments. This publication will describe the baseline configuration for the Xflows experimental campaign and the roadmap to achieve its primary objectives.

13.
Phys Rev Lett ; 108(19): 195003, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-23003051

RESUMO

Nonuniformities seeded by both long- and short-wavelength laser perturbations can grow via Rayleigh-Taylor (RT) instability in direct-drive inertial confinement fusion, leading to performance reduction in low-adiabat implosions. To mitigate the effect of laser imprinting on target performance, spherical RT experiments have been performed on OMEGA using Si- or Ge-doped plastic targets in a cone-in-shell configuration. Compared to a pure plastic target, radiation preheating from these high-Z dopants (Si/Ge) increases the ablation velocity and the standoff distance between the ablation front and laser-deposition region, thereby reducing both the imprinting efficiency and the RT growth rate. Experiments showed a factor of 2-3 reduction in the laser-imprinting efficiency and a reduced RT growth rate, leading to significant (3-5 times) reduction in the σ(rms) of shell ρR modulation for Si- or Ge-doped targets. These features are reproduced by radiation-hydrodynamics simulations using the two-dimensional hydrocode DRACO.

14.
Phys Rev Lett ; 109(11): 115001, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-23005637

RESUMO

Magnetic fields generated by the Rayleigh-Taylor instability were measured in laser-accelerated planar foils using ultrafast proton radiography. Thin plastic foils were irradiated with ∼4-kJ, 2.5-ns laser pulses focused to an intensity of ∼10(14) W/cm(2) on the OMEGA EP Laser System. Target modulations were seeded by laser nonuniformities and amplified during target acceleration by the Rayleigh-Taylor instability. The experimental data show the hydrodynamic evolution of the target and MG-level magnetic fields generated in the broken foil. The experimental data are in good agreement with predictions from 2-D magnetohydrodynamic simulations.

15.
Phys Rev Lett ; 108(25): 255006, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-23004611

RESUMO

The first experimental demonstration of Rayleigh-Taylor-induced magnetic fields due to the Biermann battery effect has been made. Experiments with laser-irradiated plastic foils were performed to investigate these illusive fields using a monoenergetic proton radiography system. Path-integrated B field strength measurements were inferred from radiographs and found to increase from 10 to 100 T µm during the linear growth phase for 120 µm perturbations. Proton fluence modulations were corrected for Coulomb scattering using measured areal density profiles from x-ray radiographs.

16.
Phys Rev Lett ; 109(26): 265003, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23368573

RESUMO

The Fermi-degenerate plasma conditions created in liquid deuterium by a laser-ablation-driven shock wave were probed with noncollective, spectrally resolved, inelastic x-ray Thomson scattering employing Cl Ly(α) line emission at 2.96 keV. These first x-ray Thomson scattering measurements of the microscopic properties of shocked deuterium show an inferred spatially averaged electron temperature of 8±5 eV, an electron density of 2.2(±0.5)×10(23) cm(-3), and an ionization of 0.8 (-0.25, +0.15). Two-dimensional hydrodynamic simulations using equation-of-state models suited for the extreme parameters occurring in inertial confinement fusion research and planetary interiors are consistent with the experimental results.

17.
Phys Rev Lett ; 108(8): 085002, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22463537

RESUMO

Time-resolved K(α) spectroscopy has been used to infer the hot-electron equilibration dynamics in high-intensity laser interactions with picosecond pulses and thin-foil solid targets. The measured K(α)-emission pulse width increases from ~3 to 6 ps for laser intensities from ~10(18) to 10(19) W/cm(2). Collisional energy-transfer model calculations suggest that hot electrons with mean energies from ~0.8 to 2 MeV are contained inside the target. The inferred mean hot-electron energies are broadly consistent with ponderomotive scaling over the relevant intensity range.

18.
Phys Rev Lett ; 108(7): 075002, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22401216

RESUMO

Measurements of the D(d,p)T (dd) and T(t,2n)(4)He (tt) reaction yields have been compared with those of the D(t,n)(4)He (dt) reaction yield, using deuterium-tritium gas-filled inertial confinement fusion capsule implosions. In these experiments, carried out on the OMEGA laser, absolute spectral measurements of dd protons and tt neutrons were obtained. From these measurements, it was concluded that the dd yield is anomalously low and the tt yield is anomalously high relative to the dt yield, an observation that we conjecture to be caused by a stratification of the fuel in the implosion core. This effect may be present in ignition experiments planned on the National Ignition Facility.

19.
Phys Rev Lett ; 108(2): 025001, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22324691

RESUMO

This Letter reports the first time-gated proton radiography of the spatial structure and temporal evolution of how the fill gas compresses the wall blowoff, inhibits plasma jet formation, and impedes plasma stagnation in the hohlraum interior. The potential roles of spontaneously generated electric and magnetic fields in the hohlraum dynamics and capsule implosion are discussed. It is shown that interpenetration of the two materials could result from the classical Rayleigh-Taylor instability occurring as the lighter, decelerating ionized fill gas pushes against the heavier, expanding gold wall blowoff. This experiment showed new observations of the effects of the fill gas on x-ray driven implosions, and an improved understanding of these results could impact the ongoing ignition experiments at the National Ignition Facility.

20.
Phys Rev Lett ; 109(2): 025003, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-23030170

RESUMO

Measurements of the neutron spectrum from the T(t,2n)4He (tt) reaction have been conducted using inertial confinement fusion implosions at the OMEGA laser facility. In these experiments, deuterium-tritium (DT) gas-filled capsules were imploded to study the tt reaction in thermonuclear plasmas at low reactant center-of-mass (c.m.) energies. In contrast to accelerator experiments at higher c.m. energies (above 100 keV), these results indicate a negligible n + 5He reaction channel at a c.m. energy of 23 keV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA