Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38256168

RESUMO

Malignant melanoma is one of the most aggressive and resistant tumor types, with high metastatic properties. Because of the lack of suitable chemotherapeutic agents for treatment, the 5-year survival rate of melanoma patients with regional and distant metastases is lower than 10%. Targeted tumor therapy that provides several promising results might be a good option for the treatment of malignant melanomas. Our goal was to develop novel melanoma-specific peptide-drug conjugates for targeted tumor therapy. Melanocortin-1-receptor (MC1R) is a cell surface receptor responsible for melanogenesis and it is overexpressed on the surface of melanoma cells, providing a good target. Its native ligand, α-MSH (α-melanocyte-stimulating hormone) peptide, or its derivatives, might be potential homing devices for this purpose. Therefore, we prepared three α-MSH derivative-daunomycin (Dau) conjugates and their in vitro and in vivo antitumor activities were compared. Dau has an autofluorescence property; therefore, it is suitable for preparing conjugates for in vitro (e.g., cellular uptake) and in vivo experiments. Dau was attached to the peptides via a non-cleavable oxime linkage that was applied efficiently in our previous experiments, resulting in conjugates with high tumor growth inhibition activity. The results indicated that the most promising conjugate was the compound in which Dau was connected to the side chain of Lys (Ac-SYSNleEHFRWGK(Dau=Aoa)PV-NH2). The highest cellular uptake by melanoma cells was demonstrated using the compound, with the highest tumor growth inhibition detected both on mouse (38.6% on B16) and human uveal melanoma (55% on OMC-1) cells. The effect of the compound was more pronounced than that of the free drug.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Animais , Camundongos , Melanoma/tratamento farmacológico , alfa-MSH/farmacologia , Receptor Tipo 1 de Melanocortina , Agressão
2.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38339141

RESUMO

Chemotherapy is still one of the main therapeutic approaches in cancer therapy. Nevertheless, its poor selectivity causes severe toxic side effects that, together with the development of drug resistance in tumor cells, results in a limitation for its application. Tumor-targeted drug delivery is a possible choice to overcome these drawbacks. As well as monoclonal antibodies, peptides are promising targeting moieties for drug delivery. However, the development of peptide-drug conjugates (PDCs) is still a big challenge. The main reason is that the conjugates have to be stable in circulation, but the drug or its active metabolite should be released efficiently in the tumor cells. For this purpose, suitable linker systems are needed that connect the drug molecule with the homing peptide. The applied linker systems are commonly categorized as cleavable and non-cleavable linkers. Both the groups possess advantages and disadvantages that are summarized briefly in this manuscript. Moreover, in this review paper, we highlight the benefit of oxime-linked anthracycline-peptide conjugates in the development of PDCs. For instance, straightforward synthesis as well as a conjugation reaction proceed in excellent yields, and the autofluorescence of anthracyclines provides a good tool to select the appropriate homing peptides. Furthermore, we demonstrate that these conjugates can be used properly in in vivo studies. The results indicate that the oxime-linked PDCs are potential candidates for targeted tumor therapy.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Daunorrubicina/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Oximas/uso terapêutico , Peptídeos/química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Preparações Farmacêuticas/metabolismo
3.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834514

RESUMO

The blood-brain barrier (BBB) is a semipermeable system, and, therefore, most of the active substances are poorly transported through this barrier, resulting in decreased therapeutic effects. Angiopep-2 (TFFYGGSRGKRNNFKTEEY) is a peptide ligand of low-density lipoprotein receptor-related protein-1 (LRP1), which can cross the BBB via receptor-mediated transcytosis and simultaneously target glioblastomas. Angiopep-2 contains three amino groups that have previously been used to produce drug-peptide conjugates, although the role and importance of each position have not yet been investigated. Thus, we studied the number and position of drug molecules in Angiopep-2 based conjugates. Conjugates containing one, two, and three daunomycin molecules conjugated via oxime linkage in all possible variations were prepared. The in vitro cytostatic effect and cellular uptake of the conjugates were investigated on U87 human glioblastoma cells. Degradation studies in the presence of rat liver lysosomal homogenates were also performed in order for us to better understand the structure-activity relationship and to determine the smallest metabolites. Conjugates with the best cytostatic effects had a drug molecule at the N-terminus. We demonstrated that the increasing number of drug molecules does not necessarily increase the efficacy of the conjugates, and proved that modification of the different conjugation sites results in differing biological effectiveness.


Assuntos
Citostáticos , Glioblastoma , Ratos , Animais , Humanos , Daunorrubicina/metabolismo , Peptídeos/química , Barreira Hematoencefálica/metabolismo , Glioblastoma/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Linhagem Celular Tumoral
4.
Int J Mol Sci ; 24(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37628856

RESUMO

Angiogenesis plays a crucial role in tumour progression and metastatic spread; therefore, the development of specific vectors targeting angiogenesis has attracted the attention of several researchers. Since angiogenesis-associated aminopeptidase N (APN/CD13) is highly expressed on the surface of activated endothelial cells of new blood vessels and a wide range of tumour cells, it holds great promise for imaging and therapy in the field of cancer medicine. The selective binding capability of asparagine-glycine-arginine (NGR) motif containing molecules to APN/CD13 makes radiolabelled NGR peptides promising radiopharmaceuticals for the non-invasive, real-time imaging of APN/CD13 overexpressing malignancies at the molecular level. Preclinical small animal model systems are major keystones for the evaluation of the in vivo imaging behaviour of radiolabelled NGR derivatives. Based on existing literature data, several positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radioisotopes have been applied so far for the labelling of tumour vasculature homing NGR sequences such as Gallium-68 (68Ga), Copper-64 (64Cu), Technetium-99m (99mTc), Lutetium-177 (177Lu), Rhenium-188 (188Re), or Bismuth-213 (213Bi). Herein, a comprehensive overview is provided of the recent preclinical experiences with radiolabelled imaging probes targeting angiogenesis.


Assuntos
Células Endoteliais , Compostos Radiofarmacêuticos , Animais , Antígenos CD13 , Fenômenos Fisiológicos Cardiovasculares , Modelos Animais de Doenças
5.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834815

RESUMO

Targeted tumour therapy has proved to be an efficient alternative to overcome the limitations of conventional chemotherapy. Among several receptors upregulated in cancer cells, the gastrin-releasing peptide receptor (GRP-R) has recently emerged as a promising target for cancer imaging, diagnosing and treatment due to its overexpression on cancerous tissues such as breast, prostate, pancreatic and small-cell lung cancer. Herein, we report on the in vitro and in vivo selective delivery of the cytotoxic drug daunorubicin to prostate and breast cancer, by targeting GRP-R. Exploiting many bombesin analogues as homing peptides, including a newly developed peptide, we produced eleven daunorubicin-containing peptide-drug conjugates (PDCs), acting as drug delivery systems to safely reach the tumour environment. Two of our bioconjugates revealed remarkable anti-proliferative activity, an efficient uptake by all three tested human breast and prostate cancer cell lines, high stability in plasma and a prompt release of the drug-containing metabolite by lysosomal enzymes. Moreover, they revealed a safe profile and a consistent reduction of the tumour volume in vivo. In conclusion, we highlight the importance of GRP-R binding PDCs in targeted cancer therapy, with the possibility of further tailoring and optimisation.


Assuntos
Bombesina , Neoplasias da Próstata , Masculino , Humanos , Receptores da Bombesina/metabolismo , Preparações Farmacêuticas , Peptídeos , Neoplasias da Próstata/metabolismo , Daunorrubicina
6.
Q Rev Biophys ; 53: e2, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32000865

RESUMO

Spontaneous deamidation prompted backbone isomerization of Asn/Asp residues resulting in - most cases - the insertion of an extra methylene group into the backbone poses a threat to the structural integrity of proteins. Here we present a systematical analysis of how temperature, pH, presence of charged residues, but most importantly backbone conformation and dynamics affect isomerization rates as determined by nuclear magnetic resonance in the case of designed peptide-models. We demonstrate that restricted mobility (such as being part of a secondary structural element) may safeguard against isomerization, but this protective factor is most effective in the case of off-pathway folds which can slow the reaction by several magnitudes compared to their on-pathway counterparts. We show that the geometric descriptors of the initial nucleophilic attack of the isomerization can be used to classify local conformation and contribute to the design of stable protein drugs, antibodies or the assessment of the severity of mutations.At any ­Asn/AspGly­ sites in proteins a spontaneous backbone isomerization occurs within days under physiological conditions leading to various forms of proteopathy. This unwanted transformation especially harmful to long-lived proteins (e.g. hemoglobin and crystallins), can be slowed down, though never stopped, by a rigid three-dimensional protein fold, if it can delay in the conformational maze, on-pathway intermediates from occurring.


Assuntos
Asparagina/química , Ácido Aspártico/química , Glicina/química , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Ponto Isoelétrico , Isomerismo , Cinética , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Mutação , Ornitina Descarboxilase/química , Peptídeos/química , Estrutura Secundária de Proteína , Proteoma , Temperatura
7.
Int J Mol Sci ; 23(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35563462

RESUMO

The human gonadotropin releasing hormone (GnRH-I) and its sea lamprey analogue GnRH-III specifically bind to GnRH receptors on cancer cells and can be used as targeting moieties for targeted tumor therapy. Considering that the selective release of drugs in cancer cells is of high relevance, we were encouraged to develop cleavable, self-immolative GnRH-III-drug conjugates which consist of a p-aminobenzyloxycarbonlyl (PABC) spacer between a cathepsin B-cleavable dipeptide (Val-Ala, Val-Cit) and the classical anticancer drugs daunorubicin (Dau) and paclitaxel (PTX). Alongside these compounds, non-cleavable GnRH-III-drug conjugates were also synthesized, and all compounds were analyzed for their antiproliferative activity. The cleavable GnRH-III bioconjugates revealed a growth inhibitory effect on GnRH receptor-expressing A2780 ovarian cancer cells, while their activity was reduced on Panc-1 pancreatic cancer cells exhibiting a lower GnRH receptor level. Moreover, the antiproliferative activity of the non-cleavable counterparts was strongly reduced. Additionally, the efficient cleavage of the Val-Ala linker and the subsequent release of the drugs could be verified by lysosomal degradation studies, while radioligand binding studies ensured that the GnRH-III-drug conjugates bound to the GnRH receptor with high affinity. Our results underline the high value of GnRH-III-based homing devices and the application of cathepsin B-cleavable linker systems for the development of small molecule drug conjugates (SMDCs).


Assuntos
Hormônio Liberador de Gonadotropina , Terapia de Alvo Molecular , Neoplasias Ovarianas , Receptores LHRH , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Catepsina B/química , Catepsina B/uso terapêutico , Linhagem Celular Tumoral , Daunorrubicina/química , Daunorrubicina/uso terapêutico , Feminino , Hormônio Liberador de Gonadotropina/uso terapêutico , Humanos , Terapia de Alvo Molecular/métodos , Paclitaxel/química , Paclitaxel/uso terapêutico , Petromyzon , Ácido Pirrolidonocarboxílico/análogos & derivados , Ácido Pirrolidonocarboxílico/uso terapêutico , Receptores LHRH/uso terapêutico
8.
Int J Mol Sci ; 22(4)2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33562082

RESUMO

The use of peptide-drug conjugates has generated wide interest as targeted antitumor therapeutics. The anthracycline antibiotic, daunomycin, is a widely used anticancer agent and it is often conjugated to different tumor homing peptides. However, comprehensive analytical characterization of these conjugates via tandem mass spectrometry (MS/MS) is challenging due to the lability of the O-glycosidic bond and the appearance of MS/MS fragment ions with little structural information. Therefore, we aimed to investigate the optimal fragmentation conditions that suppress the prevalent dissociation of the anthracycline drug and provide good sequence coverage. In this study, we comprehensively compared the performance of common fragmentation techniques, such as higher energy collisional dissociation (HCD), electron transfer dissociation (ETD), electron-transfer higher energy collisional dissociation (EThcD) and matrix-assisted laser desorption/ionization-tandem time-of-flight (MALDI-TOF/TOF) activation methods for the structural identification of synthetic daunomycin-peptide conjugates by high-resolution tandem mass spectrometry. Our results showed that peptide backbone fragmentation was inhibited by applying electron-based dissociation methods to conjugates, most possibly due to the "electron predator" effect of the daunomycin. We found that efficient HCD fragmentation was largely influenced by several factors, such as amino acid sequences, charge states and HCD energy. High energy HCD and MALDI-TOF/TOF combined with collision induced dissociation (CID) mode are the methods of choice to unambiguously assign the sequence, localize different conjugation sites and differentiate conjugate isomers.


Assuntos
Daunorrubicina/análogos & derivados , Daunorrubicina/metabolismo , Peptídeos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Daunorrubicina/química , Transporte de Elétrons , Peptídeos/química , Conformação Proteica
9.
Soft Matter ; 16(24): 5759-5769, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32530018

RESUMO

Numerous peptide-drug conjugates have been developed over the years to enhance the specificity and selectivity of chemotherapeutic agents for tumour cells. In our present work, epidermal growth factor receptor targeting drug-peptide conjugates were prepared using GE11 and D4 peptides. To ensure the drug release, the cathepsin B labile GFLG spacer was incorporated between the targeting peptide and the drug molecule (daunomycin), which significantly increased the hydrophobicity and thereby decreased the water solubility of the conjugates. To overcome the solubility problem, drug-peptide-polymer conjugates with systematic structural variations were prepared, by linking poly(ethylene glycol) (PEG) or a well-defined amino-monofunctional hyperbranched polyglycerol (HbPG) directly or via a pentaglycine spacer to the targeting peptides. All the drug-peptide-polymer conjugates were water-soluble as confirmed by turbidimetric measurements. The results of the in vitro cell viability and cellular uptake measurements on HT-29 human colon adenocarcinoma cells proved that the HbPG and the PEG highly influenced the biological activity. The conjugation of the hydrophilic polymer resulted in the amphiphilic character of the conjugates, which led to self-aggregation and nanoparticle formation that decreased the cellular uptake above a specific aggregation concentration. On the other hand, the hydrodynamic volume and the different polymer chain topology of the linear PEG and the compact hyperbranched HbPG also played an important role in the biological activity. Therefore, in similar systems, the investigation of the colloidal properties is inevitable for the better understanding of the biological activity, which can reveal the structure-activity relationship of amphiphilic drug-peptide-polymer conjugates for efficient tumour targeting.


Assuntos
Antibióticos Antineoplásicos , Daunorrubicina , Glicerol , Oligopeptídeos , Peptídeos , Polietilenoglicóis , Polímeros , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Daunorrubicina/química , Daunorrubicina/farmacologia , Receptores ErbB , Glicerol/química , Glicerol/farmacologia , Humanos , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Polímeros/química , Polímeros/farmacologia
10.
J Periodontal Res ; 55(5): 713-723, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32406091

RESUMO

BACKGROUND AND OBJECTIVE: Periodontal ligament cells (PDLCs) are an important source for periodontal tissue healing and regeneration. Proper cell adhesion is a key for survival of anchorage-dependent cells and also initiates further intracellular signals for essential cellular functions. We aimed to test 3 different synthetic conjugates with integrin-binding RGD sequence (SAK-c[RGDfC], AK-c[RGDfC], and SAK-opn on the adhesion of human PDLCs and subsequent events including proliferation, migration, behavior of cell surface molecules, and osteogenic differentiation. MATERIALS AND METHODS: Synthetic peptides were synthesized by solid-phase technique and attached to branched chain polymeric polypeptides via thioether linkage. Simple adsorption method was used to coat tissue culture plastic or electric arrays. PDLCs were isolated from 24 surgically extracted human third molars. Cell adhesion and proliferation were measured with real-time impedimetric xCELLigence SP system. Cell migration assay was performed with Ibidi® Culture inserts. Cell surface antigens were detected using flow cytometry analysis. Osteogenic differentiation was assessed with alkaline phosphatase (ALP) assay and Alizarin Red S staining, and real-time qPCR was performed to analyze the osteoblast-related gene expression. Osteogenic differentiation and adipogenic differentiation of PDLCs were monitored by real-time Electrical Cell-Substrate Impedance Spectroscopy (ECIS). RESULTS: Primary outcome of this study relies on that all three synthetic RGD peptides improved PDLC adhesion (P < .05). When animal serum is absent in culture medium, SAK-c[RGDfC] and AK-c[RGDfC] elevated cell adhesion (P < .05). Cell migration was enhanced by SAK-c[RGDfC] and AK-c[RGDfC] (P < .05). After 1-week treatment, all synthetic peptides elevated CD105 (1.7- to 2.2-fold) and CD146 (1.3- to 1.5-fold) markers and caused different integrin patterns. ALP activity (1.4-fold) and ARS (1.8- and 2.0-fold) were increased by SAK-c[RGDfC] and AK-c[RGDfC] in absence of osteogenic supplements, and all the peptides supported the mineralization under osteogenic condition (P < .05). RT-qPCR revealed the upregulation of bone sialoprotein (5.0- to 7.8-fold), osteocalcin (2.3- to 2.7-fold), and ALP (1.9- to 2.3-fold) gene expression in osteogenesis-induced PDLCs. ECIS monitoring showed that higher impedance was generated by the osteogenic induction compared with the adipogenic or the non-induced (P < .05). CONCLUSIONS: Our study demonstrates that SAK-c[RGDfC] and AK-c[RGDfC] improved adhesion and migration of PDLCs and supported osteogenic differentiation of PDLCs. These cyclic RGD peptides proved to be applicable biocompatible material in regenerative medicine.


Assuntos
Osteogênese , Peptídeos , Ligamento Periodontal , Fosfatase Alcalina , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Oligopeptídeos
11.
Int J Mol Sci ; 20(18)2019 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-31500399

RESUMO

The wide range of cellular target reactions (e.g., antitumor) of gonadotropin-releasing hormone (GnRH) variants provides the possibility to develop multifunctional GnRH conjugates. The aim of our work was to compare the cytotoxic/apoptotic activity of different GnRH-based, daunorubicin (Dau)-linked conjugates with or without butyrated Lys in position 4 (4Lys(Bu)) at a molecular level in a human colorectal carcinoma cell line. Cell viability was measured by impedimetry, cellular uptake and apoptosis were studied by flow cytometry, and the expression of apoptosis-related genes was analyzed by qRT-PCR. The modification with 4Lys(Bu) resulted in an increased cytotoxic and apoptotic effects and cellular uptake of the GnRH-I and GnRH-III conjugates. Depending on the GnRH isoform and the presence of 4Lys(Bu), the conjugates could regulate the expression of several apoptosis-related genes, especially tumor necrosis factor (TNF), tumor protein p53 (TP53) and the members of growth-factor signaling. The stronger cytotoxicity of GnRH-I and GnRH-III conjugates containing 4Lys(Bu) was associated with a stronger inhibitory effect on the expression of growth-factor signaling elements in comparison with their 4Ser counterparts, in which the upregulation of TP53 and caspases (e.g., CASP9) seemed to play a more important role. We were able to provide further evidence that targeting the GnRH receptor could serve as a successful therapeutic approach in colon cancer, and GnRH-III-[4Lys(Bu),8Lys(Dau=Aoa)] proved to be the best candidate for this purpose.


Assuntos
Antineoplásicos Hormonais/farmacologia , Apoptose/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/análogos & derivados , Hormônio Liberador de Gonadotropina/farmacologia , Animais , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/genética , Biologia Computacional/métodos , Daunorrubicina/análogos & derivados , Daunorrubicina/farmacologia , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Humanos , Transcriptoma
12.
Int J Mol Sci ; 20(19)2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31557968

RESUMO

Among various homing devices, gonadotropin-releasing hormone-III (GnRH-III) peptide represents a suitable targeting moiety for drug delivery systems. The anti-tumor activity of the previously developed GnRH-III-[4Lys(Bu),8Lys(Dau=Aoa)] conjugate and the novel synthesized GnRH-III-[2ΔHis,3d-Tic,4Lys(Bu),8Lys(Dau=Aoa)] conjugate, containing the anti-cancer drug daunorubicin, were evaluated. Here, we demonstrate that both GnRH-III-Dau conjugates possess an efficient growth inhibitory effect on more than 20 cancer cell lines, whereby the biological activity is strongly connected to the expression of gonadotropin-releasing hormone receptors (GnRH-R). The novel conjugate showed a higher in vitro anti-proliferative activity and a higher uptake capacity. Moreover, the treatment with GnRH-III-Dau conjugates cause a significant in vivo tumor growth and metastases inhibitory effect in three different orthotopic models, including 4T1 mice and MDA-MB-231 human breast carcinoma, as well as HT-29 human colorectal cancer bearing BALB/s and SCID mice, while toxic side-effects were substantially reduced in comparison to the treatment with the free drug. These findings illustrate that our novel lead compound is a highly promising candidate for targeted tumor therapy in both colon cancer and metastatic breast cancer.


Assuntos
Antineoplásicos/farmacologia , Daunorrubicina/análogos & derivados , Daunorrubicina/farmacologia , Hormônio Liberador de Gonadotropina , Ácido Pirrolidonocarboxílico/análogos & derivados , Animais , Antineoplásicos/química , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Daunorrubicina/química , Modelos Animais de Doenças , Feminino , Expressão Gênica , Hormônio Liberador de Gonadotropina/química , Humanos , Masculino , Camundongos , Estrutura Molecular , Ácido Pirrolidonocarboxílico/química , RNA Mensageiro/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Testes de Toxicidade , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Int J Mol Sci ; 20(20)2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614426

RESUMO

Head and neck squamous cell carcinomas (HNSCC) have a high mortality rate, although several potential therapeutic targets have already been identified. Gonadotropin-releasing hormone receptor (GnRH-R) expression is less studied in head and neck cancers, hence, we investigated the therapeutic relevance of GnRH-R targeting in HNSCC patients. Our results indicate that half of the patient-derived samples showed high GnRH-R expression, which was associated with worse prognosis, making this receptor a promising target for GnRH-based drug delivery. Photodynamic therapy is a clinically approved treatment for HNSCC, and the efficacy and selectivity may be enhanced by the covalent conjugation of the photosensitizer to a GnRH-R targeting peptide. Several native ligands, gonadotropin-releasing hormone (GnRH) isoforms, are known to target GnRH-R effectively. Therefore, different 4Lys(Bu) modified GnRH analogs were designed and conjugated to protoporphyrin IX. The receptor binding potency of the novel conjugates was measured on human pituitary and human prostate cancer cells, indicating only slightly lower GnRH-R affinity than the peptides. The in vitro cell viability inhibition was tested on Detroit-562 human pharyngeal carcinoma cells that express GnRH-R in high levels, and the results showed that all conjugates were more effective than the free protoporphyrin IX.


Assuntos
Neoplasias de Cabeça e Pescoço/metabolismo , Peptídeos/administração & dosagem , Protoporfirinas/química , Receptores LHRH/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Regulação para Cima , Adulto , Idoso , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/análogos & derivados , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Humanos , Masculino , Pessoa de Meia-Idade , Peptídeos/química , Peptídeos/farmacologia , Fotoquimioterapia , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Análise de Sobrevida , Análise Serial de Tecidos , Regulação para Cima/efeitos dos fármacos
14.
Molecules ; 24(16)2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31426442

RESUMO

Peptide-based small molecule drug conjugates for targeted tumor therapy are currently in the focus of intensive research. Anthracyclines, like daunomycin, are commonly used anticancer drug molecules and are also often applied in peptide-drug conjugates. However, lability of the O-glycosidic bond during electrospray ionization mass spectrometric analysis hinders the analytical characterization of the constructs. "Overprotonation" can occur if daunomycin is linked to positively charged peptide carriers, like tuftsin derivatives. In these molecules, the high number of positive charges enhances the in-source fragmentation significantly, leading to complex mass spectra composed of mainly fragment ions. Therefore, we investigated different novel tuftsin-daunomycin conjugates to find an appropriate condition for mass spectrometric detection. Our results showed that shifting the charge states to lower charges helped to keep ions intact. In this way, a clear spectrum could be obtained containing intact protonated molecules only. Shifting of the protonation states to lower charges could be achieved with the use of appropriate neutral volatile buffers and with tuning the ion source parameters.


Assuntos
Antibióticos Antineoplásicos/análise , Daunorrubicina/análise , Glicoconjugados/análise , Fatores Imunológicos/análise , Tuftsina/análise , Antibióticos Antineoplásicos/química , Daunorrubicina/química , Glicoconjugados/química , Humanos , Fatores Imunológicos/química , Estrutura Molecular , Prótons , Espectrometria de Massas por Ionização por Electrospray , Eletricidade Estática , Tuftsina/química
15.
Chemistry ; 24(35): 8841-8847, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29676491

RESUMO

Fluorogenic probes can be used to minimize the background fluorescence of unreacted and nonspecifically adsorbed reagents. The preceding years have brought substantial developments in the design and synthesis of bioorthogonally applicable fluorogenic systems mainly based on the quenching effects of azide and tetrazine moieties. The modulation power exerted by these bioorthogonal motifs typically becomes less efficient on more conjugated systems; that is, on probes with redshifted emission wavelength. To reach efficient quenching, that is, fluorogenicity, even in the red range of the spectrum, we present the synthesis, fluorogenic, and conjugation characterization of bistetrazine-cyanine probes with emission maxima between 600 and 620 nm. The probes can bind to genetically altered proteins harboring an 11-amino acid peptide tag with two appending cyclooctyne motifs. Moreover, we also demonstrate the use of these bistetrazines as fluorogenic, covalent cross-linkers between monocyclooctynylated proteins.

16.
Molecules ; 23(9)2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30177664

RESUMO

Inspired by the well-established clinical evidence about the interplay between apoptotic TRAIL (tumour necrosis factor-related apoptosis-inducing ligand) mechanism and reactive oxygen species (ROS)-mediated oxidative stress, a set of novel ONC201 hybrids containing the impiridone core and one or two differently positioned ferrocenylalkyl groups were synthesised in our present work. These two types of residues have been implicated in the aforementioned mechanisms associated with cytotoxic activity. A straightforward, primary amine-based synthetic approach was used allowing the introduction of a variety of N-substituents into the two opposite regions of the heterocyclic skeleton. Reference model compounds with benzyl and halogenated benzyl groups were also synthesised and tested. The in vitro assays of the novel impiridones on five malignant cell lines disclosed characteristic structure-activity relationship (SAR) featuring significant substituent-dependent activity and cell-selectivity. A possible contribution of ROS-mechanism to the cytotoxicity of the novel metallocenes was suggested by density functional theory (DFT)studies on simplified models. Accordingly, unlike the mono-ferrocenylalkyl-substituted products, the compounds containing two ferrocenylalkyl substituents in the opposite regions of the impiridone core display a much more pronounced long-term cytotoxic effect against A-2058 cell line than do the organic impiridones including ONC201 and ONC212. Furthermore, the prepared bis-metallocene derivatives also present substantial activity against COLO-205- and EBC-1 cell lines.


Assuntos
Antineoplásicos/síntese química , Compostos Ferrosos/química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Metalocenos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Compostos de Benzil/síntese química , Compostos de Benzil/química , Compostos de Benzil/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células HT29 , Humanos , Imidazóis , Metalocenos/química , Metalocenos/farmacologia , Modelos Moleculares , Piridinas , Pirimidinas , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
17.
Beilstein J Org Chem ; 14: 930-954, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29765474

RESUMO

Cancer is the second leading cause of death affecting nearly one in two people, and the appearance of new cases is projected to rise by >70% by 2030. To effectively combat the menace of cancer, a variety of strategies have been exploited. Among them, the development of peptide-drug conjugates (PDCs) is considered as an inextricable part of this armamentarium and is continuously explored as a viable approach to target malignant tumors. The general architecture of PDCs consists of three building blocks: the tumor-homing peptide, the cytotoxic agent and the biodegradable connecting linker. The aim of the current review is to provide a spherical perspective on the basic principles governing PDCs, as also the methodology to construct them. We aim to offer basic and integral knowledge on the rational design towards the construction of PDCs through analyzing each building block, as also to highlight the overall progress of this rapidly growing field. Therefore, we focus on several intriguing examples from the recent literature, including important PDCs that have progressed to phase III clinical trials. Last, we address possible difficulties that may emerge during the synthesis of PDCs, as also report ways to overcome them.

18.
Beilstein J Org Chem ; 14: 1583-1594, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30013686

RESUMO

Background: Cardiomyopathy induced by the chemotherapeutic agents doxorubicin and daunorubicin is a major limiting factor for their application in cancer therapy. Chemotactic drug targeting potentially increases the tumor selectivity of drugs and decreases their cardiotoxicity. Increased expression of gonadotropin-releasing hormone (GnRH) receptors on the surface of tumor cells has been reported. Thus, the attachment of the aforementioned chemotherapeutic drugs to GnRH-based peptides may result in compounds with increased therapeutic efficacy. The objective of the present study was to examine the cytotoxic effect of anticancer drug-GnRH-conjugates against two essential cardiovascular cell types, such as cardiomyocytes and endothelial cells. Sixteen different previously developed GnRH-conjugates containing doxorubicin, daunorubicin and methotrexate were investigated in this study. Their cytotoxicity was determined on primary human cardiac myocytes (HCM) and human umbilical vein endothelial cells (HUVEC) using the xCELLigence SP system, which measures impedance changes caused by adhering cells on golden electrode arrays placed at the bottom of the wells. Slopes of impedance-time curves were calculated and for the quantitative determination of cytotoxicity, the difference to the control was analysed. Results: Doxorubicin and daunorubicin exhibited a cytotoxic effect on both cell types, at the highest concentrations tested. Doxorubicin-based conjugates (AN-152, GnRH-III(Dox-O-glut), GnRH-III(Dox-glut-GFLG) and GnRH-III(Dox=Aoa-GFLG) showed the same cytotoxic effect on cardiomyocytes. Among the daunorubicin-based conjugates, [4Lys(Ac)]-GnRH-III(Dau=Aoa), GnRH-III(Dau=Aoa-YRRL), {GnRH-III(Dau=Aoa-YRRL-C)}2 and {[4N-MeSer]-GnRH-III(Dau-C)}2 had a significant but decreased cytotoxic effect, while the other conjugates - GnRH-III(Dau=Aoa), GnRH-III(Dau=Aoa-K(Dau=Aoa)), [4Lys(Dau=Aoa)]-GnRH-III(Dau=Aoa), GnRH-III(Dau=Aoa-GFLG), {GnRH-III(Dau-C)}2 and [4N-MeSer]-GnRH-III(Dau=Aoa) - exerted no cytotoxic effect on cardiomyocytes. Mixed conjugates containing methotrexate and daunorubicin - GnRH-III(Mtx-K(Dau=Aoa)) and [4Lys(Mtx)]-GnRH-III(Dau=Aoa) - showed no cytotoxic effect on cardiomyocytes, as well. Conclusion: Based on these results, anticancer drug-GnRH-based conjugates with no cytotoxic effect on cardiomyocytes were identified. In the future, these compounds could provide a more targeted antitumor therapy with no cardiotoxic adverse effects. Moreover, impedimetric cytotoxicity analysis could be a valuable technique to determine the effect of drugs on cardiomyocytes.

19.
Beilstein J Org Chem ; 14: 2495-2509, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30344773

RESUMO

Background: Peptide hormone-based targeted tumor therapy is an approved strategy to selectively block the tumor growth and spreading. The gonadotropin-releasing hormone receptors (GnRH-R) overexpressed on different tumors (e.g., melanoma) could be utilized for drug-targeting by application of a GnRH analog as a carrier to deliver a covalently linked chemotherapeutic drug directly to the tumor cells. In this study our aim was (i) to analyze the effects of GnRH-drug conjugates on melanoma cell proliferation, adhesion and migration, (ii) to study the mechanisms of tumor cell responses, and (iii) to compare the activities of conjugates with the free drug. Results: In the tested conjugates, daunorubicin (Dau) was coupled to 8Lys of GnRH-III (GnRH-III(Dau=Aoa)) or its derivatives modified with 4Lys acylated with short-chain fatty acids (acetyl group in [4Lys(Ac)]-GnRH-III(Dau=Aoa) and butyryl group in [4Lys(Bu)]-GnRH-III(Dau=Aoa)). The uptake of conjugates by A2058 melanoma model cells proved to be time dependent. Impedance-based proliferation measurements with xCELLigence SP system showed that all conjugates elicited irreversible tumor growth inhibitory effects mediated via a phosphoinositide 3-kinase-dependent signaling. GnRH-III(Dau=Aoa) and [4Lys(Ac)]-GnRH-III(Dau=Aoa) were shown to be blockers of the cell cycle in the G2/M phase, while [4Lys(Bu)]-GnRH-III(Dau=Aoa) rather induced apoptosis. In short-term, the melanoma cell adhesion was significantly increased by all the tested conjugates. The modification of the GnRH-III in position 4 was accompanied by an increased cellular uptake, higher cytotoxic and cell adhesion inducer activity. By studying the cell movement of A2058 cells with a holographic microscope, it was found that the migratory behavior of melanoma cells was increased by [4Lys(Ac)]-GnRH-III(Dau=Aoa), while the GnRH-III(Dau=Aoa) and [4Lys(Bu)]-GnRH-III(Dau=Aoa) decreased this activity. Conclusion: Internalization and cytotoxicity of the conjugates showed that GnRH-III peptides could guard Dau to melanoma cells and promote antitumor activity. [4Lys(Bu)]-GnRH-III(Dau=Aoa) possessing the butyryl side chain acting as a "second drug" proved to be the best candidate for targeted tumor therapy due to its cytotoxicity and immobilizing effect on tumor cell spreading. The applicability of impedimetry and holographic phase imaging for characterizing cancer cell behavior and effects of targeted chemotherapeutics with small structural differences (e.g., length of the side chain in 4Lys) was also clearly suggested.

20.
Beilstein J Org Chem ; 14: 911-918, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29765472

RESUMO

Cyclic NGR peptides as homing devices are good candidates for the development of drug conjugates for targeted tumor therapy. In our previous study we reported that the Dau=Aoa-GFLGK(c[KNGRE]-GG-)-NH2 conjugate has a significant antitumor activity against both CD13+ HT-1080 human fibrosarcoma and CD13- but integrin positive HT-29 human colon adenocarcinoma cells. However, it seems that the free ε-amino group of Lys in the cycle is not necessary for the biological activity. Therefore, we developed novel cyclic NGR peptide-daunomycin conjugates in which Lys was replaced by different amino acids (Ala, Leu, Nle, Pro, Ser). The exchange of the Lys residue in the cycle simplified the cyclization step and resulted in a higher yield. The new conjugates showed lower chemostability against deamidation of Asn than the control compound, thus they had lower selectivity to CD13+ cells. However, the cellular uptake and cytotoxic effect of Dau=Aoa-GFLGK(c[NleNGRE]-GG-)-NH2 was higher in comparison to the control especially on HT-29 cells. Therefore, this conjugate is more suitable for drug targeting with dual targeting property.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA