Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34864865

RESUMO

MicroRNAs (miRNAs) play crucial roles in multiple biological processes and human diseases and can be considered as therapeutic targets of small molecules (SMs). Because biological experiments used to verify SM-miRNA associations are time-consuming and expensive, it is urgent to propose new computational models to predict new SM-miRNA associations. Here, we proposed a novel method called Dual-network Collaborative Matrix Factorization (DCMF) for predicting the potential SM-miRNA associations. Firstly, we utilized the Weighted K Nearest Known Neighbors (WKNKN) method to preprocess SM-miRNA association matrix. Then, we constructed matrix factorization model to obtain two feature matrices containing latent features of SM and miRNA, respectively. Finally, the predicted SM-miRNA association score matrix was obtained by calculating the inner product of two feature matrices. The main innovations of this method were that the use of WKNKN method can preprocess the missing values of association matrix and the introduction of dual network can integrate more diverse similarity information into DCMF. For evaluating the validity of DCMF, we implemented four different cross validations (CVs) based on two distinct datasets and two different case studies. Finally, based on dataset 1 (dataset 2), DCMF achieved Area Under receiver operating characteristic Curves (AUC) of 0.9868 (0.8770), 0.9833 (0.8836), 0.8377 (0.7591) and 0.9836 ± 0.0030 (0.8632 ± 0.0042) in global Leave-One-Out Cross Validation (LOOCV), miRNA-fixed local LOOCV, SM-fixed local LOOCV and 5-fold CV, respectively. For case studies, plenty of predicted associations have been confirmed by published experimental literature. Therefore, DCMF is an effective tool to predict potential SM-miRNA associations.


Assuntos
MicroRNAs , Algoritmos , Biologia Computacional/métodos , Predisposição Genética para Doença , Humanos , MicroRNAs/genética , Curva ROC
2.
Comput Biol Med ; 171: 108177, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422957

RESUMO

With the increasing number of microRNAs (miRNAs), identifying essential miRNAs has become an important task that needs to be solved urgently. However, there are few computational methods for essential miRNA identification. Here, we proposed a novel framework called Rotation Forest for Essential MicroRNA identification (RFEM) to predict the essentiality of miRNAs in mice. We first constructed 1,264 miRNA features of all miRNA samples by fusing 38 miRNA features obtained from the PESM paper and 1,226 miRNA functional features calculated based on miRNA-target gene interactions. Then, we employed 182 training samples with 1,264 features to train the rotation forest model, which was applied to compute the essentiality scores of the candidate samples. The main innovations of RFEM were as follows: 1) miRNA functional features were introduced to enrich the diversity of miRNA features; 2) the rotation forest model used decision tree as the base classifier and could increase the difference among base classifiers through feature transformation to achieve better ensemble results. Experimental results show that RFEM significantly outperformed two previous models with the AUC (AUPR) of 0.942 (0.944) in three comparison experiments under 5-fold cross validation, which proved the model's reliable performance. Moreover, ablation study was further conducted to demonstrate the effectiveness of the novel miRNA functional features. Additionally, in the case studies of assessing the essentiality of unlabeled miRNAs, experimental literature confirmed that 7 of the top 10 predicted miRNAs have crucial biological functions in mice. Therefore, RFEM would be a reliable tool for identifying essential miRNAs.


Assuntos
MicroRNAs , Camundongos , Animais , MicroRNAs/genética , Rotação , Biologia Computacional/métodos , Algoritmos , Predisposição Genética para Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA