Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
STAR Protoc ; 4(2): 102194, 2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37031412

RESUMO

Organotypic brain cultures are short-term assays that phenotypically and functionally recapitulate brain metastatic cells in vivo. Here, we present a protocol to generate murine organotypic brain cultures for drug screening. We describe steps for sectioning of murine brains and plating of organotypic cultures. We then detail evaluation of the anti-metastatic effect of chemical compounds through bioluminescence imaging before and after drug treatment. Combined with downstream applications, this protocol allows comprehensive characterizations of both cancer cells and the tumor-associated microenvironment. For complete details on the use and execution of this protocol, please refer to Zhu et al. (2022).1.

2.
EMBO Mol Med ; 14(3): e14552, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35174975

RESUMO

We report a medium-throughput drug-screening platform (METPlatform) based on organotypic cultures that allows to evaluate inhibitors against metastases growing in situ. By applying this approach to the unmet clinical need of brain metastasis, we identified several vulnerabilities. Among them, a blood-brain barrier permeable HSP90 inhibitor showed high potency against mouse and human brain metastases at clinically relevant stages of the disease, including a novel model of local relapse after neurosurgery. Furthermore, in situ proteomic analysis applied to metastases treated with the chaperone inhibitor uncovered a novel molecular program in brain metastasis, which includes biomarkers of poor prognosis and actionable mechanisms of resistance. Our work validates METPlatform as a potent resource for metastasis research integrating drug-screening and unbiased omic approaches that is compatible with human samples. Thus, this clinically relevant strategy is aimed to personalize the management of metastatic disease in the brain and elsewhere.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Barreira Hematoencefálica , Neoplasias Encefálicas/tratamento farmacológico , Camundongos , Recidiva Local de Neoplasia , Proteômica
3.
Nat Med ; 28(4): 752-765, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35411077

RESUMO

Whole-brain radiotherapy (WBRT) is the treatment backbone for many patients with brain metastasis; however, its efficacy in preventing disease progression and the associated toxicity have questioned the clinical impact of this approach and emphasized the need for alternative treatments. Given the limited therapeutic options available for these patients and the poor understanding of the molecular mechanisms underlying the resistance of metastatic lesions to WBRT, we sought to uncover actionable targets and biomarkers that could help to refine patient selection. Through an unbiased analysis of experimental in vivo models of brain metastasis resistant to WBRT, we identified activation of the S100A9-RAGE-NF-κB-JunB pathway in brain metastases as a potential mediator of resistance in this organ. Targeting this pathway genetically or pharmacologically was sufficient to revert the WBRT resistance and increase therapeutic benefits in vivo at lower doses of radiation. In patients with primary melanoma, lung or breast adenocarcinoma developing brain metastasis, endogenous S100A9 levels in brain lesions correlated with clinical response to WBRT and underscored the potential of S100A9 levels in the blood as a noninvasive biomarker. Collectively, we provide a molecular framework to personalize WBRT and improve its efficacy through combination with a radiosensitizer that balances therapeutic benefit and toxicity.


Assuntos
Neoplasias Encefálicas , Melanoma , Neoplasias Encefálicas/secundário , Irradiação Craniana , Humanos , Melanoma/radioterapia
4.
Neurooncol Adv ; 3(Suppl 5): v144-v156, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34859241

RESUMO

Modeling of metastatic disease in animal models is a critical resource to study the complexity of this multi-step process in a relevant system. Available models of metastatic disease to the brain are still far from ideal but they allow to address specific aspects of the biology or mimic clinically relevant scenarios. We not only review experimental models and their potential improvements but also discuss specific answers that could be obtained from them on unsolved aspects of clinical management.

5.
Cancers (Basel) ; 11(6)2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31146405

RESUMO

Most patients with pancreatic ductal adenocarcinoma (PDAC) undergoing curative resection relapse within months, often with liver metastases. The hepatic microenvironment determines induction and reversal of dormancy during metastasis. Both tumor growth and metastasis depend on the Tumor necrosis factor (TNF)-related apoptosis-inducing ligand-receptor 2 (TRAIL-R2). This study investigated the interplay of TRAIL-R2 and the hepatic microenvironment in liver metastases formation and the impact of surgical resection. Although TRAIL-R2-knockdown (PancTu-I shTR2) decreased local relapses and number of macroscopic liver metastases after primary tumor resection in an orthotopic PDAC model, the number of micrometastases was increased. Moreover, abdominal surgery induced liver inflammation involving activation of hepatic stellate cells (HSCs) into hepatic myofibroblasts (HMFs). In coculture with HSCs, proliferation of PancTu-I shTR2 cells was significantly lower compared to PancTu-I shCtrl cells, an effect still observed after switching coculture from HSC to HMF, mimicking surgery-mediated liver inflammation and enhancing cell proliferation. CXCL-8/IL-8 blockade diminished HSC-mediated growth inhibition in PancTu-I shTR2 cells, while Vascular Endothelial Growth Factor (VEGF) neutralization decreased HMF-mediated proliferation. Overall, this study points to an important role of TRAIL-R2 in PDAC cells in the interplay with the hepatic microenvironment during metastasis. Resection of primary PDAC seems to induce liver inflammation, which might contribute to outgrowth of liver metastases.

6.
Cancer Lett ; 453: 95-106, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30930235

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is commonly diagnosed when liver metastases already emerged. We recently demonstrated that hepatic stromal cells determine the dormancy status along with cancer stem cell (CSC) properties of pancreatic ductal epithelial cells (PDECs) during metastasis. This study investigated the influence of the hepatic microenvironment - and its inflammatory status - on metabolic alterations and how these impact cell growth and CSC-characteristics of PDECs. Coculture with hepatic stellate cells (HSCs), simulating a physiological liver stroma, but not with hepatic myofibroblasts (HMFs) representing liver inflammation promoted expression of Succinate Dehydrogenase subunit B (SDHB) and an oxidative metabolism along with a quiescent phenotype in PDECs. SiRNA-mediated SDHB knockdown increased cell growth and CSC-properties. Moreover, liver micrometastases of tumor bearing KPC mice strongly expressed SDHB while expression of the CSC-marker Nestin was exclusively found in macrometastases. Consistently, RNA-sequencing and in silico modeling revealed significantly altered metabolic fluxes and enhanced SDH activity predominantly in premalignant PDECs in the presence of HSC compared to HMF. Overall, these data emphasize that the hepatic microenvironment determines the metabolism of disseminated PDECs thereby controlling cell growth and CSC-properties during liver metastasis.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Animais , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Regulação para Baixo , Humanos , Camundongos , Metástase Neoplásica , Micrometástase de Neoplasia , Células-Tronco Neoplásicas/metabolismo , Fosforilação Oxidativa , Células Estromais/metabolismo , Células Estromais/patologia , Succinato Desidrogenase/metabolismo
7.
Oncotarget ; 9(60): 31771-31786, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30167093

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is often diagnosed at advanced stages with the liver as the main site of metastases. The hepatic microenvironment has been shown to determine outgrowth of liver metastases. Cancer stem cells (CSCs) are essential for initiation and maintenance of tumors and acquisition of CSC-properties has been linked to Epithelial-Mesenchymal-Transition. Thus, this study aimed at elucidating whether and how the hepatic microenvironment impacts stemness and differentiation of disseminated pancreatic ductal epithelial cells (PDECs). Culture of premalignant H6c7-kras and malignant Panc1 PDECs together with hepatocytes and hepatic stellate cells (HSC) promoted self-renewal capacity of both PDEC lines. This was indicated by higher colony formation compared to cells cocultured with hepatocytes and hepatic myofibroblasts. Different Panc1 colony types derived from an HSC-enriched coculture were expanded and characterized revealing that holoclones exhibited an enhanced colony formation ability, elevated and exclusive expression of the CSC-marker Nestin and a more pronounced mesenchymal phenotype compared to paraclones. Moreover, Panc1 holoclone cells showed an increased tumorigenic potential in vivo leading to formation of undifferentiated tumors in 7/10 animals, while inoculation of paraclone cells only led to formation of tumors in 2/10 animals being smaller in number and size. Holoclone tumors were characterized by elevated expression of mesenchymal markers, complete loss of E-cadherin expression and high expression of Nestin. Finally, Etanercept-mediated TNF-α blocking partly reversed the mesenchymal CSC-phenotype of Panc1 holoclone cells. Overall, these data provide evidence that the hepatic microenvironment determines stemness and differentiation of PDECs, thereby substantially contributing to liver metastases of PDAC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA