Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 29(Pt 4): 1043-1053, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35787572

RESUMO

Three-dimensional X-ray diffraction (3DXRD) is shown to be feasible at the I12 Joint Engineering, Environmental and Processing (JEEP) beamline of Diamond Light Source. As a demonstration, a microstructually simple low-carbon ferritic steel was studied in a highly textured and annealed state. A processing pipeline suited to this beamline was created, using software already established in the 3DXRD user community, enabling grain centre-of-mass positions, orientations and strain tensor elements to be determined. Orientations, with texture measurements independently validated from electron backscatter diffraction (EBSD) data, possessed a ∼0.1° uncertainty, comparable with other 3DXRD instruments. The spatial resolution was limited by the far-field detector pixel size; the average of the grain centre of mass position errors was determined as ±âˆ¼80 µm. An average per-grain error of ∼1 × 10-3 for the elastic strains was also measured; this could be reduced in future experiments by improving sample preparation, geometry calibration, data collection and analysis techniques. Application of 3DXRD onto I12 shows great potential, where its implementation is highly desirable due to the flexible, open architecture of the beamline. User-owned or designed sample environments can be used, thus 3DXRD could be applied to previously unexplored scientific areas.

2.
Phys Chem Chem Phys ; 15(22): 8470-9, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23632389

RESUMO

Structural changes occurring in an Fe(72.5)Cu1Nb2Mo2Si(15.5)B7 alloy during a combination of constant rate heating (20 K min(-1)) and isothermal holding at 500 and 520 °C were investigated using in situ high-energy X-ray diffraction. We found that the ferromagnetic-to-paramagnetic transition of the amorphous phase is revealed as a change in the slope of the thermal expansion curve when heating a sample at a constant rate up to 520 °C. Real space analysis by means of the atomic pair distribution function (PDF) demonstrated that the rate and extent of the thermal expansion strongly depend on the interatomic separation. The PDF proved to be a reliable method for the description of crystallization kinetics. Further it allows determination of sizes of ultrafine nanocrystals with grain sizes well below 8 nm and thus makes observation of early stages of nanocrystallization possible. Following grain growth kinetics during isothermal annealing at 500 and 520 °C we found that the activation energy of the process is 357 ± 12 kJ mol(-1).

3.
Materials (Basel) ; 16(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36984193

RESUMO

The Mg-Zn-Ca system has previously been proposed as the most suitable biodegradable candidate for biomedical applications. In this work, a series of ribbon specimens was fabricated using a melt-spinning technique to explore the glass-forming ability of the Mg-Zn-Ca system along the concentration line of 7 at.% of calcium. A glassy state is confirmed for Mg50Zn43Ca7, Mg60Zn33Ca7, and Mg70Zn23Ca7. Those samples were characterised by standard methods to determine their mass density, hardness, elastic modulus, and crystallisation temperatures during devitrification. Their amorphous structure is described by means of pair distribution functions obtained by high-energy X-ray and neutron diffraction (HEXRD and ND) measurements performed at large-scale facilities. The contributions of pairs Mg-Mg, Mg-Zn, and Zn-Zn were identified. In addition, a transformation process from an amorphous to crystalline structure is followed in situ by HEXRD for Mg60Zn33Ca7 and Mg50Zn43Ca7. Intermetallic compounds IM1 and IM3 and hcp-Mg phase are proposed to be formed in multiple crystallisation eventss.

4.
Materials (Basel) ; 16(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37444969

RESUMO

This study focuses on the preparation and characterization of zinc-based alloys containing magnesium, calcium, and manganese. The alloys were prepared by the melting of pure elements, casting them into graphite molds, and thermo-mechanically treating them via hot extrusion. The phase compositions of the samples were analyzed using X-ray diffraction technique and SEM/EDX analysis. The analysis confirmed that in addition to the Zn matrix, the materials are reinforced by the CaZn13, MgZn2, and Mn-based precipitates. The mechanical properties of the alloys were ascertained by tensile, compressive, and bending tests, measurement of the samples microhardness and elastic modulus. The results indicate that an increase in Mn content leads to an increase in the maximum stress experienced under both tension and compression. However, the plastic deformation of the alloys decreases with increasing Mn content. This study provides valuable insights into the microstructural changes and mechanical behavior of zinc-based alloys containing magnesium, calcium, and manganese, which can be used to design alloys for specific biomedical applications.

5.
Nat Commun ; 13(1): 1082, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35228553

RESUMO

The Invar effect is universally observed in Fe-based bulk metallic glasses. However, there is limited understanding on how this effect manifests at the atomic scale. Here, we use in-situ synchrotron-based high-energy X-ray diffraction to study the structural transformations of (Fe71.2B24Y4.8)96Nb4 and (Fe73.2B22Y4.8)95Mo5 bulk metallic glasses around the Curie temperature to understand the Invar effect they exhibit. The first two diffraction peaks shift in accordance with the macroscopically measured thermal expansion, which reveals the Invar effect. Additionally, the nearest-neighbor Fe-Fe pair distance correlates well with the macroscopic thermal expansion. In-situ X-ray diffraction is thus able to elucidate the Invar effect in Fe-based metallic glasses at the atomic scale. Here, we find that the Invar effect is not just a macroscopic effect but has a clear atomistic equivalent in the average Fe-Fe pair distance and also shows itself in higher-order atomic shells composed of multiple atom species.

6.
J Appl Crystallogr ; 53(Pt 6): 1434-1443, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33304221

RESUMO

An experimental technique is described for the collection of time-resolved X-ray diffraction information from a complete commercial battery cell during discharging or charging cycles. The technique uses an 80 × 80 pixel 2D energy-discriminating detector in a pinhole camera geometry which can be used with a polychromatic X-ray source. The concept was proved in a synchrotron X-ray study of commercial alkaline Zn-MnO2 AA size cells. Importantly, no modification of the cell was required. The technique enabled spatial and temporal changes to be observed with a time resolution of 20 min (5 min of data collection with a 15 min wait between scans). Chemical changes in the cell determined from diffraction information were correlated with complementary X-ray tomography scans performed on similar cells from the same batch. The clearest results were for the spatial and temporal changes in the Zn anode. Spatially, there was a sequential transformation of Zn to ZnO in the direction from the separator towards the current collector. Temporally, it was possible to track the transformation of Zn to ZnO during the discharge and follow the corresponding changes in the cathode.

7.
J Phys Chem B ; 120(34): 9204-14, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27479758

RESUMO

The structure of Ge20SbxSe80-x (x = 5, 15, 20) glasses was investigated by neutron diffraction, X-ray diffraction, and extended X-ray fine structure measurements at the Ge, Sb, and Se K-edges. For each composition, large-scale structural models were obtained by fitting simultaneously the experimental data sets in the framework of the reverse Monte Carlo simulation technique. It was found that the structures of these glasses can be described mostly by the chemically ordered network model. Ge-Se and Sb-Se bonds are preferred; Se-Se bonds in the Se-poor composition (x = 20) and M-M (M = Ge, Sb) bonds in strongly Se-rich glass (x = 5) are not needed. The quality of the fits was significantly improved by introducing Ge-Ge bonding in the nearly stoichiometric composition (x = 15), showing a violation of chemical ordering. The structure of Ge20SbxSe80-x was compared to that of several glasses from the three analogous systems (Ge-As-Se, Ge-As-Te, Ge-Sb-Te), and it was found that chemical short-range order becomes more pronounced upon substituting As with Sb and Se with Te. Ge-As-Se glasses behave as random covalent networks over a very broad composition range. Chemical short-range order and disorder coexist in both Te-rich and Te-poor Ge-As-Te glasses, whereas amorphous Ge14Sb29Te57 and Ge22Sb22Te56 are governed by strict chemical preferences.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA