RESUMO
The study investigated the impact of Lonicera caerulea L. juice matrix modification and drying techniques on powder characteristics. The evaluation encompassed phenolics (514.7-4388.7 mg/100 g dry matter), iridoids (up to 337.5 mg/100 g dry matter), antioxidant and antiglycation capacity, as well as anti-ageing properties of powders produced using maltodextrin, inulin, trehalose, and palatinose with a pioneering role as a carrier. Spray drying proved to be competitive with freeze drying for powder quality. Carrier application influenced the fruit powder properties. Trehalose protected the phenolics in the juice extract products, whereas maltodextrin showed protective effect in the juice powders. The concentrations of iridoids were influenced by the matrix type and drying technique. Antiglycation capacity was more affected by the carrier type in juice powders than in extract products. However, with carrier addition, the latter showed approximately 12-fold higher selectivity for acetylcholinesterase than other samples. Understanding the interplay between matrix composition, drying techniques, and powder properties provides insights for the development of plant-based products with tailored attributes, including potential health-linked properties.
Assuntos
Liofilização , Lonicera , Extratos Vegetais , Pós , Secagem por Atomização , Liofilização/métodos , Pós/química , Lonicera/química , Extratos Vegetais/química , Antioxidantes/química , Antioxidantes/análise , Sucos de Frutas e Vegetais/análise , Polissacarídeos/química , Polissacarídeos/análise , Fenóis/análise , Fenóis/químicaRESUMO
BACKGROUND: Sour cherry juice concentrate powder can serve as a modern, easy-to-handle, phenolics-rich merchandise; however, its transformation into powdered form requires the addition of carriers. In line with the latest trends in food technology, this study valorizes the use of dairy by-products (whey protein concentrate, whey, buttermilk, and mixes with maltodextrin) as carriers. A new multiple approach for higher drying yield, phenolics retention (phenolic acids, flavonols and anthocyanins) and antioxidant capacity of powders were tested as an effect of simultaneous decrease of drying temperature due to the drying air dehumidification and lower carrier content. RESULTS: Dairy-based carriers were effective for spray drying of sour cherry-juice concentrate. The drying yield was increased and retention of phenolics was higher when compared with maltodextrin. The application of dehumidified air, which enabled the drying temperature to be reduced, affected drying yield positively, and also affected particle morphology and retention of phenolics (the phenolic content was approximately 30% higher than with spray drying). CONCLUSIONS: The study proved that it is possible to apply dairy-based by-products to produce sour cherry juice concentrate powders profitably, lowering the spray-drying temperature and changing the carrier content. Dehumidified air spray drying can be recommended for the production of fruit juice concentrate powders with improved physicochemical properties. © 2023 Society of Chemical Industry.
Assuntos
Prunus avium , Pós/química , Antocianinas , Secagem por Atomização , FenóisRESUMO
Fruits from rosehip (Rosa canina L.) are gaining popularity due to their content and profile of bioactive components. Rosehip is distinct for its antioxidant, immunomodulatory, and anticancer properties. However, the abundance of these bioactives led to a tart taste, resulting in its consumption mainly in processed form. Due to microbiological safety, pasteurization is the preferred way of processing, which affects the chemical properties of the juice. A promising approach to improve acceptability of rosehip's physical properties, while preserving its bioactive compounds and adding health-promoting benefits, is to enrich the rosehip juice with functional carriers before drying. The influence of the carrier type (maltodextrin, inulin, trehalose, palatinose) and drying technique (spray- and freeze-drying) on the physical, chemical, and antioxidant properties of pasteurized, and non-pasteurized juice powders was examined in this study. In addition, the ability of powders with functional carriers to inhibit protein glycation was evaluated. Spray drying led to products with improved physical properties in relation to freeze-drying. The addition of carrier substances significantly influenced the antioxidant capacity determined by TEAC ABTS and FRAP methods, whereby the application of inulin and palatinose retained antioxidant capacity better than the frequently used maltodextrin. Moreover, rosehip juice powders showed a promising ability to inhibit protein glycation.
Assuntos
Antioxidantes , Rosa , Antioxidantes/química , Rosa/química , Pós/química , Inulina , Frutas/químicaRESUMO
The objective of this study was to examine the effect of inulin and maltodextrin applied during vacuum drying of Saskatoon berry fruit, juice, and pomace on the retention of bioactive compounds and antioxidant capacity (radical scavenging capacity (ABTS), ferric reducing antioxidant potential (FRAP)) of powders obtained. Ultra-high performance liquid chromatography (UPLC-PDA-ESI-MS/MS) was used to identify major groups of polyphenolic compounds, such as: flavan-3-ols (35% of all polyphenols for fruit powder, 33% for juice powder, and 39% for pomace powders of all polyphenols), anthocyanins (26% for fruit powder, 5% for juice powder, and 34% for pomace), phenolic acids (33% for fruit powder, 55% for juice powder, and 20% for pomace powder), and flavanols (6% for fruit powder, 6% for juice powder, and 7% for pomace powder). In general, the content of polyphenols was more dependent on the content than on the type of carrier used for drying, regardless of the matrix tested. The average sum of polyphenols and the antioxidant activity (for ABTS and FRAP assay) of the powders with 30% of carrier addition were 5054.2 mg/100 g dry matter (d.m.) as well as 5.3 and 3.6 mmol Trolox/100 g d.m. in the ABTS and FRAP tests, respectively. The increase in carrier concentration by 20% caused a decrease of 1.5-fold in the content of polyphenols and a 1.6-fold and 1.5-fold in the antioxidant potential, regardless of the matrix tested. The principal component analysis (PCA) analysis indicated that the freeze-drying process led to the lowest degradation of the identified compounds, regardless of the matrix tested, with the exception of juice and pomace powders dried by vacuum drying at 60 °C. In this case, the release of (-)-epicatechin was observed, causing an increase in the flavanol contents. Thus, this work demonstrated the effect of processing and matrix composition on the preservation of antioxidant bioactives in Saskatoon berry powders. Properly designed high-quality Saskatoon berry powders with the mentioned carriers may be used as nutraceutical additives to fortify food products and to improve their functional properties.
Assuntos
Antioxidantes/química , Inulina/química , Extratos Vegetais/química , Polissacarídeos/química , Pós , Antocianinas/análise , Antocianinas/química , Antioxidantes/farmacologia , Ingredientes de Alimentos/análise , Extratos Vegetais/análise , Polifenóis/químicaRESUMO
Osmotic dehydration (OD) performed in concentrated fruit juices used as osmotic solution (OS) comes with some limitations resulting from the material cell structure and is not entirely recognized at the moment. Filtration of the juice could provide some insight into the phenomena occurring throughout the OD. Therefore, the main aim of the study was to recognize the mechanism of selective penetration during OD and evaluate the effect of filtration on physical and chemical properties of osmo-dehydrated material. For this purpose, OD of pumpkin in non-filtrated and filtrated (filters 0.2, 0.45, 0.8, 1.2, 3, 5 and 8 µm) concentrated chokeberry juice was carried out in the study. Moreover, scanning electron microscope (SEM) images were provided. Total phenolic content (TPC) and antioxidant capacity measured by Ferric Reducing Antioxidant Potential (FRAP) and Trolox Equivalent Antioxidant Capacity (TEAC ABTS) of OS and the material were determined. It was found that even though filtration of osmotic solution had a moderate influence on the mass transfer, it greatly affected the chemical composition of dehydrated material. The best option, considering both chemical and physical properties of the dehydrated material, is the use of non-filtrated solution. However, when shorter time of OD is considered, much better results are obtained for filtrated solutions.
Assuntos
Fenômenos Químicos , Dessecação , Filtração , Osmose , Antioxidantes/análise , Modelos Teóricos , Polifenóis/análise , SoluçõesRESUMO
Sea buckthorn (Hippophaë rhamnoides L.) juice with inulin, maltodextrin, and inulin:maltodextrin (1:2 and 2:1) were spray-, freeze- and vacuum-dried at 50, 70 and 90 °C. The study aimed to assess the impact of drying methods and carrier agents on physical properties (moisture content, water activity, true and bulk density, porosity, color parameters, browning index), chemical components (hydroxymethylfurfural and phenolic compounds) and antioxidant capacity of sea buckthorn juice powders. Storage of powders was carried out for six months. Inulin caused stronger water retention in powders than maltodextrin. Vacuum drying provided powders with the highest bulk density. Maltodextrin did not promote browning and HMF formation as strongly as inulin. More phenolic compounds were found in powders with maltodextrin. Storage increased the antioxidant capacity of powders. The results obtained will be useful in optimizing the powders production on an industrial scale, designing attractive food ingredients.
Assuntos
Antioxidantes/análise , Dessecação/métodos , Sucos de Frutas e Vegetais/análise , Hippophae/química , Extratos Vegetais/análise , Extratos Vegetais/química , Pós/química , Manipulação de Alimentos , Liofilização , Higroscópicos/química , Inulina/química , Polissacarídeos/químicaRESUMO
Recovering bioactives from botanical by-products in the form of powders has been attempted through a number of multidirectional approaches. Yet understanding the processing of such plant formulations requires dedicated research owing to the manifold factors shaping the quality of powders. Therefore, the study aimed at production of cranberry powders from pomace extracts and to evaluate how different solvent type, carriers and drying techniques modulate their physico-chemical properties. Freeze- and vacuum drying significantly differentiated samples in terms of physical properties, while the extraction solvent and carrier type had substantial impact on chemical ones. For carrier-added products pomace extraction with acidified 50% ethanol resulted in the highest content of identified phenolics in powders (up to 5.87 g · 100 g-1 dry matter), while 30% acetone in the lowest (on average, 3.94 g · 100 g-1 dry matter). Acetone extraction strengthened the formation of hydroxymethyl-L-furfural that was higher when compared to acidified 50% ethanol, while trace amounts were reported for non-acidified counterpart. Similar observation was made in the case of flavan-3-ols. Addition of carriers during powders production led to the lower hydroxymethyl-L-furfural formation even down to 74% with regard to carrier-free samples. The study confirmed feasibility of managing cranberry pomace into high-value powders in extraction-depended and thermally-modulated quality matter.
RESUMO
The management of side streams from the food industry, especially oil and dairy by-products, has become an important issue linked to the European Commission's recommendations for a circular economy. This study aimed to obtain sustainable food additives in the form of soluble-type powders composed of whey and recovered phenolics originating from sunflower seed cake. In order to valorise these di-blend products, the powders were characterised in terms of their physical, chemical, and sensory attributes. Based on the study findings, the addition of sunflower seed cake washouts (SSCWs) to whey (Wh) decreased the dry matter in the feed that affected the viscosity and drying yield. The addition of SSCWs did not have a significant effect on the physical properties of powders, except for colour. By-product management proposed in the study resulted in the production of nutritious and ready-to-use products in powder form with improved functional properties in terms of phenolic compounds and antioxidant capacity. The powders were sensorially appealing with a tangy sourness entwined with a delicate interplay of sweet and salty flavours, which can be easily incorporated into different types of foodstuffs.
RESUMO
Chokeberry fruit, one of the richest plant sources of bioactives, is processed into different foodstuffs, mainly juice, which generates a considerable amount of by-products. To follow the latest trends in the food industry considering waste management, the study aimed to produce chokeberry pomace extract powders and conduct experimental and chemometric assessment of the effect of different carriers and drying techniques on the physico-chemical properties of such products. The PCA analysis showed that the examined powders were classified into two groups: freeze-dried (variation in case of moisture content, water activity, colour, and browning index) and vacuum-dried (bulk density). No clear pattern was observed for the physical properties of carrier added products. The sum of polyphenolics (phenolic acids, anthocyanins and flavonols) ranged from 3.3-22.7 g/100 g dry matter. Drying techniques had a stronger effect on the polyphenols profile than the type of carrier. Hydroxymethyl-L-furfural formation was enhanced by inulin addition during high-temperature treatment. Overall, the addition of maltodextrin and trehalose mixture for freeze drying and vacuum drying at 90 °C caused the highest retention of polyphenolics and the lowest formation of hydroxymethyl-L-furfural; however, an individual and comprehensive approach is required when the obtainment of high-quality chokeberry powders is expected.
RESUMO
During fruit juice powdering process numerous alterations may occur as a result of interactions of native bioactives and carriers. The objective was to investigate the effect of carrier addition on the changes in polyphenols' profile in chokeberry powders obtained by spray- (180 °C), vacuum- (50, 70, 90 °C) and freeze-drying and to evaluate the interactions between bioactives toward formation of process contaminants. Phenolic acids, anthocyanins, flavonols, flavan-3-ols and procyanidins were identified in powders (18.1 - 35.4 g kg-1 dry matter). Vacuum drying at 90 °C resulted in a significant increase in (+)-catechin and HMF contents. The addition of inulin enhanced the generation of HMF compared to maltodextrin. Overall, addition of maltodextrin allowed for better anthocyanins' retention. Depending on the drying method used, maltodextrin allowed for better retention of polyphenolics during freeze- and vacuum drying, while inulin during spray drying. The elaboration of the results was supported by chemometric analysis.
Assuntos
Furaldeído/química , Informática , Polifenóis/química , Rosaceae/química , Temperatura , Dessecação , Sucos de Frutas e Vegetais/análise , Polifenóis/análise , PósRESUMO
The consumption of plums in a fresh form is seasonal, therefore the transformation of plum juice extracts into powdered form is a good alternative for its longer availability throughout the year. The drying process can moderate the physical and chemical properties of the plum extracts, thus, this study examined the changes in biological activity, i.e., antibacterial, antioxidant, and anti-inflammatory properties moderated by freeze, vacuum, and spray drying. It was suggested that the drying processes and the applied parameters might moderate the content of polyphenolic compounds in the powders, which influence the different levels of growth inhibition against the foodborne pathogens (17% to 58% of inhibition), demonstrating a strain-dependent effect. These powders could also induce cellular protection against oxidative stress by preventing intracellular reactive oxygen species (ROS) accumulation (23% to 37% of reduction), but the level of antioxidant capacity may be determined by the conditions applied during the drying process. Moreover, plum extract powders exhibited a greater anti-inflammatory capacity (24% to 39% of inhibition), which would be influenced both, by the type of treatment used and by the temperature used in each treatment. The results demonstrate that the selection of the drying method can be an effective tool for modulating the composition, physical, and bioactive properties of plum extracts powders.
RESUMO
Fruit powders can become a new and innovative direction of using the potential of Japanese quince (JQ) fruit in an affordable form. Therefore, physical (dry matter, true and bulk density, porosity and color) and chemical parameters of JQ juice powders obtained by using different carrier agents and drying techniques were evaluated. The juice was mixed with maltodextrin, inulin and a mixture of both in different proportions and dried using freeze, spray, and vacuum (50, 70, and 90 °C) drying techniques. The identification and quantification of phenolic compounds in JQ juice powders were performed by LC-PDA-QTOF-MS and UPLC-PDA, respectively, while antioxidant capacity was measured using ABTS, FRAP and ORAC assays. In addition, enzymatic in vitro inhibition tests of α-glucosidase, pancreatic lipase, acetylcholinesterase and 15-lipoxygenase were performed. Among the drying techniques applied, freeze-drying resulted in the highest retention of polyphenols, while among the carrier agents maltodextrin was found to be the best biopolymer for obtaining high-quality fruit powder and also ensured powders with the lowest content of undesirable hydroxymethylfurfural.