RESUMO
Stimulator of interferon genes (STING) is a dimeric transmembrane adapter protein that plays a key role in the human innate immune response to infection and has been therapeutically exploited for its antitumor activity. The activation of STING requires its high-order oligomerization, which could be induced by binding of the endogenous ligand, cGAMP, to the cytosolic ligand-binding domain. Here we report the discovery through functional screens of a class of compounds, named NVS-STGs, that activate human STING. Our cryo-EM structures show that NVS-STG2 induces the high-order oligomerization of human STING by binding to a pocket between the transmembrane domains of the neighboring STING dimers, effectively acting as a molecular glue. Our functional assays showed that NVS-STG2 could elicit potent STING-mediated immune responses in cells and antitumor activities in animal models.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Membrana , Animais , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Bioensaio , Citosol , Imunidade Inata , Ligantes , Proteínas de Membrana/metabolismoRESUMO
The complement pathway is an important part of the immune system, and uncontrolled activation is implicated in many diseases. The human complement component 5 protein (C5) is a validated drug target within the complement pathway, as an anti-C5 antibody (Soliris) is an approved therapy for paroxysmal nocturnal hemoglobinuria. Here, we report the identification, optimization and mechanism of action for the first small-molecule inhibitor of C5 complement protein.
Assuntos
Complemento C5/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Complemento C5/metabolismo , Humanos , Conformação Molecular , Bibliotecas de Moléculas Pequenas/químicaRESUMO
Protein poly(ADP-ribosyl)ation and ubiquitination are two key post-translational modifications regulating many biological processes. Through crystallographic and biochemical analysis, we show that the RNF146 WWE domain recognizes poly(ADP-ribose) (PAR) by interacting with iso-ADP-ribose (iso-ADPR), the smallest internal PAR structural unit containing the characteristic ribose-ribose glycosidic bond formed during poly(ADP-ribosyl)ation. The key iso-ADPR-binding residues we identified are highly conserved among WWE domains. Binding assays further demonstrate that PAR binding is a common function for the WWE domain family. Since many WWE domain-containing proteins are known E3 ubiquitin ligases, our results suggest that protein poly(ADP-ribosyl)ation may be a general mechanism to target proteins for ubiquitination.
Assuntos
Adenosina Difosfato Ribose/metabolismo , Modelos Moleculares , Poli Adenosina Difosfato Ribose/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Adenosina Difosfato Ribose/química , Sequência de Aminoácidos , Regulação Enzimológica da Expressão Gênica , Células HEK293 , Humanos , Dados de Sequência Molecular , Mutagênese , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Ubiquitina-Proteína Ligases/genética , UbiquitinaçãoRESUMO
Spinal muscular atrophy (SMA), which results from the loss of expression of the survival of motor neuron-1 (SMN1) gene, represents the most common genetic cause of pediatric mortality. A duplicate copy (SMN2) is inefficiently spliced, producing a truncated and unstable protein. We describe herein a potent, orally active, small-molecule enhancer of SMN2 splicing that elevates full-length SMN protein and extends survival in a severe SMA mouse model. We demonstrate that the molecular mechanism of action is via stabilization of the transient double-strand RNA structure formed by the SMN2 pre-mRNA and U1 small nuclear ribonucleic protein (snRNP) complex. The binding affinity of U1 snRNP to the 5' splice site is increased in a sequence-selective manner, discrete from constitutive recognition. This new mechanism demonstrates the feasibility of small molecule-mediated, sequence-selective splice modulation and the potential for leveraging this strategy in other splicing diseases.
Assuntos
Processamento Alternativo , Atrofia Muscular Espinal/tratamento farmacológico , RNA de Cadeia Dupla/agonistas , Ribonucleoproteína Nuclear Pequena U1/agonistas , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo , Animais , Sítios de Ligação , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/mortalidade , Atrofia Muscular Espinal/patologia , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Proteólise , Precursores de RNA/agonistas , Precursores de RNA/química , Precursores de RNA/metabolismo , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/metabolismo , Ribonucleoproteína Nuclear Pequena U1/química , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/metabolismo , Análise de Sobrevida , Proteína 2 de Sobrevivência do Neurônio Motor/química , Proteína 2 de Sobrevivência do Neurônio Motor/genéticaRESUMO
The stability of the Wnt pathway transcription factor beta-catenin is tightly regulated by the multi-subunit destruction complex. Deregulated Wnt pathway activity has been implicated in many cancers, making this pathway an attractive target for anticancer therapies. However, the development of targeted Wnt pathway inhibitors has been hampered by the limited number of pathway components that are amenable to small molecule inhibition. Here, we used a chemical genetic screen to identify a small molecule, XAV939, which selectively inhibits beta-catenin-mediated transcription. XAV939 stimulates beta-catenin degradation by stabilizing axin, the concentration-limiting component of the destruction complex. Using a quantitative chemical proteomic approach, we discovered that XAV939 stabilizes axin by inhibiting the poly-ADP-ribosylating enzymes tankyrase 1 and tankyrase 2. Both tankyrase isoforms interact with a highly conserved domain of axin and stimulate its degradation through the ubiquitin-proteasome pathway. Thus, our study provides new mechanistic insights into the regulation of axin protein homeostasis and presents new avenues for targeted Wnt pathway therapies.
Assuntos
Proteínas Repressoras/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tanquirases/antagonistas & inibidores , Proteínas Wnt/antagonistas & inibidores , Proteína Axina , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteômica , Proteínas Repressoras/química , Tanquirases/metabolismo , Transcrição Gênica/efeitos dos fármacos , Ubiquitina/metabolismo , Ubiquitinação , Proteínas Wnt/metabolismo , beta Catenina/antagonistas & inibidores , beta Catenina/metabolismoRESUMO
Proper regulation of cell morphogenesis and migration by adhesion and growth-factor receptors requires Abl-family tyrosine kinases [1-3]. Several substrates of Abl-family kinase have been identified, but they are unlikely to mediate all of the downstream actions of these kinases on cytoskeletal structure. We used a human protein microarray to identify the actin-regulatory protein cortactin as a novel substrate of the Abl and Abl-related gene (Arg) nonreceptor tyrosine kinases. Cortactin stimulates cell motility [4-6], and its upregulation in several cancers correlates with poor prognosis [7]. Even though cortactin can be tyrosine phosphorylated by Src-family kinases in vitro [8], we show that Abl and Arg are more adept at binding and phosphorylating cortactin. Importantly, we demonstrate that platelet-derived growth-factor (PDGF)-induced cortactin phosphorylation on three tyrosine residues requires Abl or Arg. Cortactin triggers F-actin-dependent dorsal waves in fibroblasts after PDGF treatment and thus results in actin reorganization and lamellipodial protrusion [9]. We provide evidence that Abl/Arg-mediated phosphorylation of cortactin is required for this PDGF-induced dorsal-wave response. Our results reveal that Abl-family kinases target cortactin as an effector of cytoskeletal rearrangements in response to PDGF.
Assuntos
Membrana Celular/metabolismo , Cortactina/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Proteínas Tirosina Quinases/metabolismo , Células 3T3 , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Actinas/metabolismo , Animais , Dinaminas/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Camundongos , Fosforilação , Fator de Crescimento Derivado de Plaquetas/metabolismo , Análise Serial de ProteínasRESUMO
BACKGROUND: Over the last decade, kinases have emerged as attractive therapeutic targets for a number of different diseases, and numerous high throughput screening efforts in the pharmaceutical community are directed towards discovery of compounds that regulate kinase function. The emerging utility of systems biology approaches has necessitated the development of multiplex tools suitable for proteomic-scale experiments to replace lower throughput technologies such as mass spectroscopy for the study of protein phosphorylation. Recently, a new approach for identifying substrates of protein kinases has applied the miniaturized format of functional protein arrays to characterize phosphorylation for thousands of candidate protein substrates in a single experiment. This method involves the addition of protein kinases in solution to arrays of immobilized proteins to identify substrates using highly sensitive radioactive detection and hit identification algorithms. RESULTS: To date, the factors required for optimal performance of protein array-based kinase substrate identification have not been described. In the current study, we have carried out a detailed characterization of the protein array-based method for kinase substrate identification, including an examination of the effects of time, buffer compositions, and protein concentration on the results. The protein array approach was compared to standard solution-based assays for assessing substrate phosphorylation, and a correlation of greater than 80% was observed. The results presented here demonstrate how novel substrates for protein kinases can be quickly identified from arrays containing thousands of human proteins to provide new clues to protein kinase function. In addition, a pooling-deconvolution strategy was developed and applied that enhances characterization of specific kinase-substrate relationships and decreases reagent consumption. CONCLUSION: Functional protein microarrays are an important new tool that enables multiplex analysis of protein phosphorylation, and thus can be utilized to identify novel kinase substrates. Integrating this technology with a systems biology approach to cell signalling will help uncover new layers in our understanding of this essential class of enzymes.
Assuntos
Análise Serial de Proteínas/métodos , Proteínas Quinases/análise , Proteínas Quinases/química , Sequência de Aminoácidos , Humanos , Dados de Sequência Molecular , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise de Sequência de Proteína , Especificidade por SubstratoRESUMO
Small molecules, such as metabolites and hormones, interact with proteins to regulate numerous biological pathways, which are often aberrant in disease. Small molecule drugs have been successfully exploited to specifically perturb such processes and thereby, decrease and even eliminate disease progression. Although there are compelling reasons to fully characterize interactions of small molecules with all proteins from an organism for which an intended drug regimen is planned, currently available technologies are not yet up to this task. High-content functional protein microarrays, containing hundreds to thousands of proteins, are new tools that show great potential for meeting this need. In this chapter, we review examples and methods for profiling small molecules on high-content functional protein arrays and discuss considerations for troubleshooting.
Assuntos
Produtos Biológicos/metabolismo , Análise Serial de Proteínas , Proteômica/métodos , Receptores de Droga/metabolismo , Produtos Biológicos/química , Produtos Biológicos/genética , Perfilação da Expressão Gênica/métodos , Modelos Moleculares , Ligação ProteicaRESUMO
Although approximately 10,000 antibodies are available from commercial sources, antibody reagents are still unavailable for most proteins. Furthermore, new applications such as antibody arrays and monoclonal antibody therapeutics have increased the demand for more specific antibodies to reduce cross-reactivity and side effects. An array containing every protein for the relevant organism represents the ideal format for an assay to test antibody specificity, because it allows the simultaneous screening of thousands of proteins for possible cross-reactivity. As an initial test of this approach, we screened 11 polyclonal and monoclonal antibodies to approximately 5,000 different yeast proteins deposited on a glass slide and found that, in addition to recognizing their cognate proteins, the antibodies cross-reacted with other yeast proteins to varying degrees. Some of the interactions of the antibodies with noncognate proteins could be deduced by alignment of the primary amino acid sequences of the antigens and cross-reactive proteins; however, these interactions could not be predicted a priori. Our findings show that proteome array technology has potential to improve antibody design and selection for applications in both medicine and research.
Assuntos
Anticorpos/análise , Anticorpos/imunologia , Especificidade de Anticorpos/imunologia , Complexo Antígeno-Anticorpo/análise , Complexo Antígeno-Anticorpo/imunologia , Análise Serial de Proteínas/métodos , Mapeamento de Interação de Proteínas/métodos , Proteoma/imunologia , Anticorpos/química , Complexo Antígeno-Anticorpo/química , Proteínas Fúngicas/imunologia , Imunoensaio/instrumentação , Imunoensaio/métodos , Sondas Moleculares/química , Sondas Moleculares/imunologia , Análise Serial de Proteínas/instrumentação , Proteoma/química , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
Arrays of immobilized proteins have been developed for the discovery and characterization of protein functions ranging from molecular recognition to enzymatic activity. The success of these applications is highly dependent upon the maintenance of protein structure and function while in an immobilized state - a largely untested hypothesis. However, the immobilization of functional proteins is not without precedent. Active enzymes have been successfully immobilized for industrial applications for several decades. Furthermore, a survey of recent protein microarray literature reveals that an even wider range of proteins can maintain 'proper' function while immobilized. These reports help to validate the functionality of so-called functional protein microarrays.
Assuntos
Análise Serial de Proteínas , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Enzimas/química , Enzimas/metabolismo , Humanos , Ligação ProteicaRESUMO
Protein microarrays are miniaturized formats for studying proteins. This technology is empowering investigators with the ability to profile numerous types of interactions to progress basic science research and to advance drug discovery and development. Protein microarrays are poised to make significant contributions to our understanding of biology and disease because: (i) both covalent and non-covalent interactions can be reconstituted on solid-state supports; and (ii) a wealth of knowledge can be generated rapidly from such simple experiments. This feature focuses on applications of protein microarrays that have tremendous potential for addressing bottlenecks in disease-focused discovery efforts.
Assuntos
Indústria Farmacêutica/métodos , Análise Serial de Proteínas/métodos , Animais , Biomarcadores/análise , Humanos , Ligação Proteica , Mapeamento de Interação de Proteínas/métodos , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-TraducionalRESUMO
The increased use of antibodies as therapeutics, as well as the growing demand for large numbers of antibodies for high-throughput protein analyses, has been accompanied by a need for more specific antibodies. An array containing every protein for the relevant organism represents the ideal format for an assay to test antibody specificity since it allows the simultaneous screening of thousands of proteins in relatively normalized quantities. Indeed, the use of a yeast proleome array to profile the specificity of several antibodies directed against yeast proteins has recently been described. In this chapter, we present a detailed description of the methods used to probe protein arrays with antibodies as well as the technical issues to consider when carrying out such experiments.
Assuntos
Especificidade de Anticorpos , Análise Serial de Proteínas , Anticorpos/metabolismo , Proteínas Fúngicas/análise , Humanos , Análise Serial de Proteínas/instrumentação , Análise Serial de Proteínas/métodos , Proteoma/análise , SoftwareRESUMO
Improvements in technology that allow miniaturization and high-throughput analyses of thousand of genes and gene products have changed the focus and scope of research and development in both academia and industry. It is now possible to study entire proteomes with the goals of elucidating protein expression, subcellular localization, biochemical activities, and their regulation. Alterations in different cell types and conditions and in normal and disease states can be revealed. This wealth of information not only has facilitated our basic understanding of many biological processes but also has enormous potential for drug discovery and development.
Assuntos
Proteínas/análise , Proteômica , Coleta de Dados , Desenho de Fármacos , Expressão Gênica , Espectrometria de Massas/métodos , Análise Serial de Proteínas , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Proteínas/genética , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/metabolismo , Frações Subcelulares/químicaRESUMO
Bioactive small molecules are an invaluable source of therapeutics and chemical probes for exploring biological pathways. Yet, significant hurdles in drug discovery often come from lacking a comprehensive view of the target(s) for both early tool molecules and even late-stage drugs. To address this challenge, a method is provided that allows for assessing the interactions of small molecules with thousands of targets without any need to modify the small molecule of interest or attach any component to a surface. We describe size-exclusion chromatography for target identification (SEC-TID), a method for accurately and reproducibly detecting ligand-macromolecular interactions for small molecules targeting nucleic acid and several protein classes. We report the use of SEC-TID, with a library consisting of approximately 1000 purified proteins derived from the protein databank (PDB), to identify the efficacy targets tankyrase 1 and 2 for the Wnt inhibitor XAV939. In addition, we report novel interactions for the tumor-vascular disrupting agent vadimezan/ASA404 (interacting with farnesyl pyrophosphate synthase) and the diuretic mefruside (interacting with carbonic anhydrase XIII). We believe this method can dramatically enhance our understanding of the mechanism of action and potential liabilities for small molecules in drug discovery pipelines through comprehensive profiling of candidate druggable targets.
Assuntos
Cromatografia em Gel/métodos , Espectrometria de Massas/métodos , Proteínas/química , Proteômica/métodos , Animais , Calorimetria , Domínio Catalítico , Bovinos , Cromatografia Líquida , Cristalografia por Raios X , Bases de Dados de Proteínas , Descoberta de Drogas , Fluorometria , Humanos , Ligantes , Substâncias Macromoleculares , Espectroscopia de Ressonância Magnética , Ácidos Nucleicos/química , Bibliotecas de Moléculas Pequenas/química , Xantonas/químicaRESUMO
Argyrins, produced by myxobacteria and actinomycetes, are cyclic octapeptides with antibacterial and antitumor activity. Here, we identify elongation factor G (EF-G) as the cellular target of argyrin B in bacteria, via resistant mutant selection and whole genome sequencing, biophysical binding studies and crystallography. Argyrin B binds a novel allosteric pocket in EF-G, distinct from the known EF-G inhibitor antibiotic fusidic acid, revealing a new mode of protein synthesis inhibition. In eukaryotic cells, argyrin B was found to target mitochondrial elongation factor G1 (EF-G1), the closest homologue of bacterial EF-G. By blocking mitochondrial translation, argyrin B depletes electron transport components and inhibits the growth of yeast and tumor cells. Further supporting direct inhibition of EF-G1, expression of an argyrin B-binding deficient EF-G1 L693Q variant partially rescued argyrin B-sensitivity in tumor cells. In summary, we show that argyrin B is an antibacterial and cytotoxic agent that inhibits the evolutionarily conserved target EF-G, blocking protein synthesis in bacteria and mitochondrial translation in yeast and mammalian cells.
Assuntos
Oligopeptídeos/metabolismo , Fator G para Elongação de Peptídeos/metabolismo , Sítio Alostérico , Sequência de Aminoácidos , Animais , Burkholderia/efeitos dos fármacos , Linhagem Celular Tumoral , Sequência Conservada , Cristalografia por Raios X , Humanos , Mamíferos , Testes de Sensibilidade Microbiana , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Fator G para Elongação de Peptídeos/antagonistas & inibidores , Fator G para Elongação de Peptídeos/química , Ligação Proteica/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de AminoácidosAssuntos
Química Farmacêutica/tendências , Nanotecnologia/tendências , Análise Serial de Proteínas/tendências , Proteínas/efeitos dos fármacos , Animais , Humanos , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Análise Serial de Proteínas/estatística & dados numéricos , Ligação Proteica , Proteínas/análise , Proteínas/química , Proteínas/metabolismoRESUMO
The Wnt/ß-catenin signalling pathway plays essential roles in embryonic development and adult tissue homeostasis, and deregulation of this pathway has been linked to cancer. Axin is a concentration-limiting component of the ß-catenin destruction complex, and its stability is regulated by tankyrase. However, the molecular mechanism by which tankyrase-dependent poly(ADP-ribosyl)ation (PARsylation) is coupled to ubiquitylation and degradation of axin remains undefined. Here, we identify RNF146, a RING-domain E3 ubiquitin ligase, as a positive regulator of Wnt signalling. RNF146 promotes Wnt signalling by mediating tankyrase-dependent degradation of axin. Mechanistically, RNF146 directly interacts with poly(ADP-ribose) through its WWE domain, and promotes degradation of PARsylated proteins. Using proteomics approaches, we have identified BLZF1 and CASC3 as further substrates targeted by tankyrase and RNF146 for degradation. Thus, identification of RNF146 as a PARsylation-directed E3 ligase establishes a molecular paradigm that links tankyrase-dependent PARsylation to ubiquitylation. RNF146-dependent protein degradation may emerge as a major mechanism by which tankyrase exerts its function.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Wnt/metabolismo , Sequência de Aminoácidos , Animais , Proteína Axina , Humanos , Hidrólise , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Ubiquitina-Proteína Ligases/químicaRESUMO
The generation of large-scale data sets is a fundamental requirement of systems biology. But despite recent advances, generation of such high-coverage data remains a major challenge. We developed a pooling-deconvolution strategy that can dramatically decrease the effort required. This strategy, pooling with imaginary tags followed by deconvolution (PI-deconvolution), allows the screening of 2(n) probe proteins (baits) in 2 x n pools, with n replicates for each bait. Deconvolution of baits with their binding partners (preys) can be achieved by reading the prey's profile from the 2 x n experiments. We validated this strategy for protein-protein interaction mapping using both proteome microarrays and a yeast two-hybrid array, demonstrating that PI-deconvolution can be used to identify interactions accurately with fewer experiments and better coverage. We also show that PI-deconvolution can be used to identify protein-small molecule interactions inferred from profiling the yeast deletion collection. PI-deconvolution should be applicable to a wide range of library-against-library approaches and can also be used to optimize array designs.