Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 553(7688): 356-360, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29310120

RESUMO

In addition to acting as template for protein synthesis, messenger RNA (mRNA) often contains sensory sequence elements that regulate this process. Here we report a new mechanism that limits the number of complete protein molecules that can be synthesized from a single mRNA molecule of the human AMD1 gene encoding adenosylmethionine decarboxylase 1 (AdoMetDC). A small proportion of ribosomes translating AMD1 mRNA stochastically read through the stop codon of the main coding region. These readthrough ribosomes then stall close to the next in-frame stop codon, eventually forming a ribosome queue, the length of which is proportional to the number of AdoMetDC molecules that were synthesized from the same AMD1 mRNA. Once the entire spacer region between the two stop codons is filled with queueing ribosomes, the queue impinges upon the main AMD1 coding region halting its translation. Phylogenetic analysis suggests that this mechanism is highly conserved in vertebrates and existed in their common ancestor. We propose that this mechanism is used to count and limit the number of protein molecules that can be synthesized from a single mRNA template. It could serve to safeguard from dysregulated translation that may occur owing to errors in transcription or mRNA damage.


Assuntos
Adenosilmetionina Descarboxilase/genética , Códon de Terminação/genética , Modelos Genéticos , Biossíntese de Proteínas , RNA Mensageiro/genética , Ribossomos/metabolismo , Células HEK293 , Humanos , Lisossomos/metabolismo , Fases de Leitura Aberta/genética , Filogenia , Complexo de Endopeptidases do Proteassoma/metabolismo , Processos Estocásticos , Moldes Genéticos
2.
Nucleic Acids Res ; 49(W1): W662-W670, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33950201

RESUMO

Trips-Viz (https://trips.ucc.ie/) is an interactive platform for the analysis and visualization of ribosome profiling (Ribo-Seq) and shotgun RNA sequencing (RNA-seq) data. This includes publicly available and user generated data, hence Trips-Viz can be classified as a database and as a server. As a database it provides access to many processed Ribo-Seq and RNA-seq data aligned to reference transcriptomes which has been expanded considerably since its inception. Here, we focus on the server functionality of Trips-viz which also has been greatly improved. Trips-viz now enables visualisation of proteomics data from a large number of processed mass spectrometry datasets. It can be used to support translation inferred from Ribo-Seq data. Users are now able to upload a custom reference transcriptome as well as data types other than Ribo-Seq/RNA-Seq. Incorporating custom data has been streamlined with RiboGalaxy (https://ribogalaxy.ucc.ie/) integration. The other new functionality is the rapid detection of translated open reading frames (ORFs) through a simple easy to use interface. The analysis of differential expression has been also improved via integration of DESeq2 and Anota2seq in addition to a number of other improvements of existing Trips-viz features.


Assuntos
Biossíntese de Proteínas , Ribossomos , Análise de Sequência de RNA/métodos , Software , Espectrometria de Massas , Fases de Leitura Aberta , Proteômica , RNA-Seq , Ribossomos/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(40): 24936-24946, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32958672

RESUMO

While near-cognate codons are frequently used for translation initiation in eukaryotes, their efficiencies are usually low (<10% compared to an AUG in optimal context). Here, we describe a rare case of highly efficient near-cognate initiation. A CUG triplet located in the 5' leader of POLG messenger RNA (mRNA) initiates almost as efficiently (∼60 to 70%) as an AUG in optimal context. This CUG directs translation of a conserved 260-triplet-long overlapping open reading frame (ORF), which we call POLGARF (POLG Alternative Reading Frame). Translation of a short upstream ORF 5' of this CUG governs the ratio between POLG (the catalytic subunit of mitochondrial DNA polymerase) and POLGARF synthesized from a single POLG mRNA. Functional investigation of POLGARF suggests a role in extracellular signaling. While unprocessed POLGARF localizes to the nucleoli together with its interacting partner C1QBP, serum stimulation results in rapid cleavage and secretion of a POLGARF C-terminal fragment. Phylogenetic analysis shows that POLGARF evolved ∼160 million y ago due to a mammalian-wide interspersed repeat (MIR) transposition into the 5' leader sequence of the mammalian POLG gene, which became fixed in placental mammals. This discovery of POLGARF unveils a previously undescribed mechanism of de novo protein-coding gene evolution.


Assuntos
Códon de Iniciação/genética , DNA Polimerase gama/genética , Filogenia , Biossíntese de Proteínas/genética , Animais , Sequência de Bases , Proteínas de Transporte/genética , Feminino , Humanos , Proteínas Mitocondriais/genética , Fases de Leitura Aberta/genética , Gravidez , RNA Mensageiro/genética , Fases de Leitura/genética
4.
Mol Syst Biol ; 17(6): e9760, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34166567

RESUMO

Spatial organization and gene expression of mammalian chromosomes are maintained and regulated in conjunction with cell cycle progression. This is perturbed once cells enter senescence and the highly abundant HMGB1 protein is depleted from nuclei to act as an extracellular proinflammatory stimulus. Despite its physiological importance, we know little about the positioning of HMGB1 on chromatin and its nuclear roles. To address this, we mapped HMGB1 binding genome-wide in two primary cell lines. We integrated ChIP-seq and Hi-C with graph theory to uncover clustering of HMGB1-marked topological domains that harbor genes involved in paracrine senescence. Using simplified Cross-Linking and Immuno-Precipitation and functional tests, we show that HMGB1 is also a bona fide RNA-binding protein (RBP) binding hundreds of mRNAs. It presents an interactome rich in RBPs implicated in senescence regulation. The mRNAs of many of these RBPs are directly bound by HMGB1 and regulate availability of SASP-relevant transcripts. Our findings reveal a broader than hitherto assumed role for HMGB1 in coordinating chromatin folding and RNA homeostasis as part of a regulatory loop controlling cell-autonomous and paracrine senescence.


Assuntos
Proteína HMGB1 , RNA , Animais , Senescência Celular/genética , Cromatina/genética , Proteína HMGB1/genética , Homeostase/genética
5.
Nucleic Acids Res ; 47(D1): D847-D852, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30239879

RESUMO

Ribosome profiling (Ribo-Seq) is a technique that allows for the isolation and sequencing of mRNA fragments protected from nuclease digestion by actively translating ribosomes. Mapping these ribosome footprints to a genome or transcriptome generates quantitative information on translated regions. To provide access to publicly available ribosome profiling data in the context of transcriptomes we developed Trips-Viz (transcriptome-wide information on protein synthesis-visualized). Trips-Viz provides a large range of graphical tools for exploring global properties of translatomes and of individual transcripts. It enables analysis of aligned footprints to evaluate datasets quality, differential gene expression detection, visual identification of upstream ORFs and alternative proteoforms. Trips-Viz is available at https://trips.ucc.ie.


Assuntos
Bases de Dados Genéticas , Genoma/genética , Biossíntese de Proteínas/genética , Transcriptoma/genética , Expressão Gênica/genética , Humanos , RNA Mensageiro/genética , RNA-Seq , Ribossomos/genética , Software , Navegador
6.
RNA ; 24(10): 1297-1304, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30049792

RESUMO

The process of translation is characterized by irregularities in the local decoding rates of specific mRNA codons. This includes the occurrences of long pauses that can take place when ribosomes decode certain peptide sequences, encounter strong RNA secondary structures, or decode "hungry" codons. Examples are known where such pausing or stalling is used for regulating protein synthesis. This can be achieved at the level of translation via direct alteration of ribosome progression through mRNA or by altering mRNA stability via NoGo decay. Ribosome pausing has also been implicated in the cotranslational folding of proteins. Ribosome profiling data often are used for inferring the locations of ribosome pauses. However, no dedicated online software is available for this purpose. Here we present PausePred (https://pausepred.ucc.ie/), which can be used to infer ribosome pauses from ribosome profiling (Ribo-seq) data. Peaks of ribosome footprint density are scored based on their magnitude relative to the background density within the surrounding area. The scoring allows the comparison of peaks across the transcriptome or genome. In addition to the score, PausePred reports the coordinates of the pause, the footprint density at the pause site, and the surrounding nucleotide sequence. The pauses can be visualized in the context of Ribo-seq and RNA-seq density plots generated for specific transcripts or genomic regions with the Rfeet tool. PausePred does not require input on the location of protein coding ORFs (although gene annotations can be optionally supplied). As a result, it can be used universally and its output does not depend on ever evolving annotations.


Assuntos
Biossíntese de Proteínas , RNA Mensageiro/genética , Ribossomos/metabolismo , Software , Algoritmos , Sítios de Ligação , Humanos , Fases de Leitura Aberta , Ligação Proteica , RNA Mensageiro/metabolismo , Navegador
7.
Brief Bioinform ; 19(5): 1035-1050, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-28419324

RESUMO

Data workflow systems (DWFSs) enable bioinformatics researchers to combine components for data access and data analytics, and to share the final data analytics approach with their collaborators. Increasingly, such systems have to cope with large-scale data, such as full genomes (about 200 GB each), public fact repositories (about 100 TB of data) and 3D imaging data at even larger scales. As moving the data becomes cumbersome, the DWFS needs to embed its processes into a cloud infrastructure, where the data are already hosted. As the standardized public data play an increasingly important role, the DWFS needs to comply with Semantic Web technologies. This advancement to DWFS would reduce overhead costs and accelerate the progress in bioinformatics research based on large-scale data and public resources, as researchers would require less specialized IT knowledge for the implementation. Furthermore, the high data growth rates in bioinformatics research drive the demand for parallel and distributed computing, which then imposes a need for scalability and high-throughput capabilities onto the DWFS. As a result, requirements for data sharing and access to public knowledge bases suggest that compliance of the DWFS with Semantic Web standards is necessary. In this article, we will analyze the existing DWFS with regard to their capabilities toward public open data use as well as large-scale computational and human interface requirements. We untangle the parameters for selecting a preferable solution for bioinformatics research with particular consideration to using cloud services and Semantic Web technologies. Our analysis leads to research guidelines and recommendations toward the development of future DWFS for the bioinformatics research community.


Assuntos
Computação em Nuvem , Biologia Computacional/métodos , Fluxo de Trabalho , Big Data , Interpretação Estatística de Dados , Sistemas de Gerenciamento de Base de Dados , Descoberta de Drogas/estatística & dados numéricos , Genômica/estatística & dados numéricos , Humanos , Disseminação de Informação , Bases de Conhecimento , Web Semântica/estatística & dados numéricos , Interface Usuário-Computador
8.
Nucleic Acids Res ; 46(D1): D823-D830, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-28977460

RESUMO

The GWIPS-viz browser (http://gwips.ucc.ie/) is an on-line genome browser which is tailored for exploring ribosome profiling (Ribo-seq) data. Since its publication in 2014, GWIPS-viz provides Ribo-seq data for an additional 14 genomes bringing the current total to 23. The integration of new Ribo-seq data has been automated thereby increasing the number of available tracks to 1792, a 10-fold increase in the last three years. The increase is particularly substantial for data derived from human sources. Following user requests, we added the functionality to download these tracks in bigWig format. We also incorporated new types of data (e.g. TCP-seq) as well as auxiliary tracks from other sources that help with the interpretation of Ribo-seq data. Improvements in the visualization of the data have been carried out particularly for bacterial genomes where the Ribo-seq data are now shown in a strand specific manner. For higher eukaryotic datasets, we provide characteristics of individual datasets using the RUST program which includes the triplet periodicity, sequencing biases and relative inferred A-site dwell times. This information can be used for assessing the quality of Ribo-seq datasets. To improve the power of the signal, we aggregate Ribo-seq data from several studies into Global aggregate tracks for each genome.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Ribossomos , Análise de Sequência de RNA , Navegador , Apresentação de Dados , Conjuntos de Dados como Assunto , Eucariotos/genética , Genoma , Humanos , RNA Mensageiro/genética , Ribossomos/genética , Interface Usuário-Computador
9.
Int J Mol Sci ; 20(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30875926

RESUMO

BACKGROUND: Hepatitis C virus (HCV) infects human liver hepatocytes, often leading to liver cirrhosis and hepatocellular carcinoma (HCC). It is believed that chronic infection alters host gene expression and favors HCC development. In particular, HCV replication in Endoplasmic Reticulum (ER) derived membranes induces chronic ER stress. How HCV replication affects host mRNA translation and transcription at a genome wide level is not yet known. METHODS: We used Riboseq (Ribosome Profiling) to analyze transcriptome and translatome changes in the Huh-7.5 hepatocarcinoma cell line replicating HCV for 6 days. RESULTS: Established viral replication does not cause global changes in host gene expression-only around 30 genes are significantly differentially expressed. Upregulated genes are related to ER stress and HCV replication, and several regulated genes are known to be involved in HCC development. Some mRNAs (PPP1R15A/GADD34, DDIT3/CHOP, and TRIB3) may be subject to upstream open reading frame (uORF) mediated translation control. Transcriptional downregulation mainly affects mitochondrial respiratory chain complex core subunit genes. CONCLUSION: After establishing HCV replication, the lack of global changes in cellular gene expression indicates an adaptation to chronic infection, while the downregulation of mitochondrial respiratory chain genes indicates how a virus may further contribute to cancer cell-like metabolic reprogramming ("Warburg effect") even in the hepatocellular carcinoma cells used here.


Assuntos
Carcinoma Hepatocelular/virologia , Hepacivirus/patogenicidade , Hepatite C/genética , Neoplasias Hepáticas/virologia , Ribossomos/genética , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático , Regulação Neoplásica da Expressão Gênica , Hepacivirus/fisiologia , Hepatite C/virologia , Humanos , Neoplasias Hepáticas/genética , Modelos Biológicos , Fases de Leitura Aberta , Fosforilação Oxidativa , Replicação Viral
10.
RNA Biol ; 13(3): 316-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26821742

RESUMO

Ribosome profiling (ribo-seq) is a technique that uses high-throughput sequencing to reveal the exact locations and densities of translating ribosomes at the entire transcriptome level. The technique has become very popular since its inception in 2009. Yet experimentalists who generate ribo-seq data often have to rely on bioinformaticians to process and analyze their data. We present RiboGalaxy ( http://ribogalaxy.ucc.ie ), a freely available Galaxy-based web server for processing and analyzing ribosome profiling data with the visualization functionality provided by GWIPS-viz ( http://gwips.ucc.ie ). RiboGalaxy offers researchers a suite of tools specifically tailored for processing ribo-seq and corresponding mRNA-seq data. Researchers can take advantage of the published workflows which reduce the multi-step alignment process to a minimum of inputs from the user. Users can then explore their own aligned data as custom tracks in GWIPS-viz and compare their ribosome profiles to existing ribo-seq tracks from published studies. In addition, users can assess the quality of their ribo-seq data, determine the strength of the triplet periodicity signal, generate meta-gene ribosome profiles as well as analyze the relative impact of mRNA sequence features on local read density. RiboGalaxy is accompanied by extensive documentation and tips for helping users. In addition we provide a forum ( http://gwips.ucc.ie/Forum ) where we encourage users to post their questions and feedback to improve the overall RiboGalaxy service.


Assuntos
RNA Mensageiro/genética , Ribossomos/genética , Análise de Sequência de RNA/métodos , Navegador , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Biossíntese de Proteínas , Proteômica/métodos , Alinhamento de Sequência
11.
Nucleic Acids Res ; 42(Database issue): D859-64, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24185699

RESUMO

We describe the development of GWIPS-viz (http://gwips.ucc.ie), an online genome browser for viewing ribosome profiling data. Ribosome profiling (ribo-seq) is a recently developed technique that provides genome-wide information on protein synthesis (GWIPS) in vivo. It is based on the deep sequencing of ribosome-protected messenger RNA (mRNA) fragments, which allows the ribosome density along all mRNA transcripts present in the cell to be quantified. Since its inception, ribo-seq has been carried out in a number of eukaryotic and prokaryotic organisms. Owing to the increasing interest in ribo-seq, there is a pertinent demand for a dedicated ribo-seq genome browser. GWIPS-viz is based on The University of California Santa Cruz (UCSC) Genome Browser. Ribo-seq tracks, coupled with mRNA-seq tracks, are currently available for several genomes: human, mouse, zebrafish, nematode, yeast, bacteria (Escherichia coli K12, Bacillus subtilis), human cytomegalovirus and bacteriophage lambda. Our objective is to continue incorporating published ribo-seq data sets so that the wider community can readily view ribosome profiling information from multiple studies without the need to carry out computational processing.


Assuntos
Bases de Dados Genéticas , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Biossíntese de Proteínas , Análise de Sequência de RNA , Navegador , Animais , Humanos , Internet , Camundongos , RNA Mensageiro/química , Ribossomos/metabolismo , Alinhamento de Sequência
12.
Proteomics ; 15(14): 2410-6, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25736862

RESUMO

The boundaries of protein coding sequences are more difficult to define at the 5' end than at the 3' end due to potential multiple translation initiation sites (TISs). Even in the presence of phylogenetic data, the use of sequence information only may not be sufficient for the accurate identification of TISs. Traditional proteomics approaches may also fail because the N-termini of newly synthesized proteins are often processed. Thus ribosome profiling (ribo-seq), producing a snapshot of the ribosome distribution across the entire transcriptome, is an attractive experimental technique for the purpose of TIS location exploration. The GWIPS-viz (Genome Wide Information on Protein Synthesis visualized) browser (http://gwips.ucc.ie) provides free access to the genomic alignments of ribo-seq data and corresponding mRNA-seq data along with relevant annotation tracks. In this brief, we illustrate how GWIPS-viz can be used to explore the ribosome occupancy at the 5' ends of protein coding genes to assess the activity of AUG and non-AUG TISs responsible for the synthesis of proteoforms with alternative or heterogeneous N-termini. The presence of ribo-seq tracks for various organisms allows for cross-species comparison of orthologous genes and the availability of datasets from multiple laboratories permits the assessment of the technical reproducibility of the ribosome densities.


Assuntos
Biossíntese de Proteínas , Proteínas/genética , Proteômica/métodos , RNA Mensageiro/genética , Ribossomos/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Genoma , Genômica/métodos , Humanos , Camundongos , Dados de Sequência Molecular , Fases de Leitura Aberta , Proteínas/química , Alinhamento de Sequência , Software
13.
Genome Res ; 22(11): 2219-29, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22593554

RESUMO

The recently developed ribosome profiling technique (Ribo-Seq) allows mapping of the locations of translating ribosomes on mRNAs with subcodon precision. When ribosome protected fragments (RPFs) are aligned to mRNA, a characteristic triplet periodicity pattern is revealed. We utilized the triplet periodicity of RPFs to develop a computational method for detecting transitions between reading frames that occur during programmed ribosomal frameshifting or in dual coding regions where the same nucleotide sequence codes for multiple proteins in different reading frames. Application of this method to ribosome profiling data obtained for human cells allowed us to detect several human genes where the same genomic segment is translated in more than one reading frame (from different transcripts as well as from the same mRNA) and revealed the translation of hitherto unpredicted coding open reading frames.


Assuntos
Genoma Humano , Biossíntese de Proteínas/genética , Ribossomos/metabolismo , Sítios de Ligação , DNA Complementar/química , Humanos , Fases de Leitura Aberta , RNA Mensageiro/metabolismo , Análise de Sequência de DNA
14.
BMC Bioinformatics ; 15: 380, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25413677

RESUMO

BACKGROUND: Ribosome profiling (ribo-seq) provides experimental data on the density of elongating or initiating ribosomes at the whole transcriptome level that can be potentially used for estimating absolute levels of translation initiation at individual Translation Initiation Sites (TISs). These absolute levels depend on the mutual organisation of TISs within individual mRNAs. For example, according to the leaky scanning model of translation initiation in eukaryotes, a strong TIS downstream of another strong TIS is unlikely to be productive, since only a few scanning ribosomes would be able to reach the downstream TIS. In order to understand the dependence of translation initiation efficiency on the surrounding nucleotide context, it is important to estimate the strength of TISs independently of their mutual organisation, i.e. to estimate with what probability a ribosome would initiate at a particular TIS. RESULTS: We designed a simple computational approach for estimating the probabilities of ribosomes initiating at individual start codons using ribosome profiling data. The method is based on the widely accepted leaky scanning model of translation initiation in eukaryotes which postulates that scanning ribosomes may skip a start codon if the initiation context is unfavourable and continue on scanning. We tested our approach on three independent ribo-seq datasets obtained in mammalian cultured cells. CONCLUSIONS: Our results suggested that the method successfully discriminates between weak and strong TISs and that the majority of numerous non-AUG TISs reported recently are very weak. Therefore the high frequency of non-AUG TISs observed in ribosome profiling experiments is due to their proximity to mRNA 5'-ends rather than their strength. Detectable translation initiation at non-AUG codons downstream of AUG codons is comparatively infrequent. The leaky scanning method will be useful for the characterization of differences in start codon selection between tissues, developmental stages and in response to stress conditions.


Assuntos
Biologia Computacional/métodos , Técnicas Genéticas , Iniciação Traducional da Cadeia Peptídica , Animais , Células Cultivadas , Códon de Iniciação , Probabilidade , Biossíntese de Proteínas , RNA Mensageiro/genética , Ribossomos/metabolismo
15.
Nat Methods ; 13(2): 123-4, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26820545
16.
Aging Cell ; 23(4): e14083, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38196311

RESUMO

Cellular senescence is acknowledged as a key contributor to organismal ageing and late-life disease. Though popular, the study of senescence in vitro can be complicated by the prolonged and asynchronous timing of cells committing to it and by its paracrine effects. To address these issues, we repurposed a small molecule inhibitor, inflachromene (ICM), to induce senescence to human primary cells. Within 6 days of treatment with ICM, senescence hallmarks, including the nuclear eviction of HMGB1 and -B2, are uniformly induced across IMR90 cell populations. By generating and comparing various high throughput datasets from ICM-induced and replicative senescence, we uncovered a high similarity of the two states. Notably though, ICM suppresses the pro-inflammatory secretome associated with senescence, thus alleviating most paracrine effects. In summary, ICM rapidly and synchronously induces a senescent-like phenotype thereby allowing the study of its core regulatory program without confounding heterogeneity.


Assuntos
Envelhecimento , Senescência Celular , Humanos , Envelhecimento/genética , Senescência Celular/genética
17.
Nucleic Acids Res ; 39(10): 4220-34, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21266472

RESUMO

In eukaryotes, it is generally assumed that translation initiation occurs at the AUG codon closest to the messenger RNA 5' cap. However, in certain cases, initiation can occur at codons differing from AUG by a single nucleotide, especially the codons CUG, UUG, GUG, ACG, AUA and AUU. While non-AUG initiation has been experimentally verified for a handful of human genes, the full extent to which this phenomenon is utilized--both for increased coding capacity and potentially also for novel regulatory mechanisms--remains unclear. To address this issue, and hence to improve the quality of existing coding sequence annotations, we developed a methodology based on phylogenetic analysis of predicted 5' untranslated regions from orthologous genes. We use evolutionary signatures of protein-coding sequences as an indicator of translation initiation upstream of annotated coding sequences. Our search identified novel conserved potential non-AUG-initiated N-terminal extensions in 42 human genes including VANGL2, FGFR1, KCNN4, TRPV6, HDGF, CITED2, EIF4G3 and NTF3, and also affirmed the conservation of known non-AUG-initiated extensions in 17 other genes. In several instances, we have been able to obtain independent experimental evidence of the expression of non-AUG-initiated products from the previously published literature and ribosome profiling data.


Assuntos
Códon de Iniciação/química , Evolução Molecular , Regiões 5' não Traduzidas , Processamento Alternativo , Sequência de Bases , Western Blotting , Sequência Conservada , Humanos , Filogenia , RNA Mensageiro/química , Alinhamento de Sequência , Análise de Sequência de RNA
18.
J Mol Biol ; 435(14): 168043, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37356899

RESUMO

Ribosome profiling (Ribo-Seq) captures a "snapshot" of ribosomes' locations at the entire transcriptome of a cell at sub-codon resolution providing insights into gene expression and enabling the discovery of novel translated regions. RiboGalaxy (https://ribogalaxy.genomicsdatascience.ie/), a Galaxy-based platform for processing Ribo-Seq data is a RiboSeq.Org (https://riboseq.org/) resource. RiboSeq.Org is an online gateway to a set of integrated tools for the processing and analysis of Ribo-Seq data. In this RiboGalaxy update we introduce changes to both the tools available on RiboGalaxy and to how the resource is managed on the backend. For example, in order to improve interoperability between Riboseq.Org resources, we added tools that link RiboGalaxy outputs with Trips-Viz and GWIPS-viz browsers for downstream analysis and visualisation. RiboGalaxy's backend now utilises Ansible configuration management which enhances its stability and jobs are executed within Singularity containers and are managed by Slurm, strengthening reproducibility and performance respectively.


Assuntos
Biossíntese de Proteínas , Perfil de Ribossomos , Software , Reprodutibilidade dos Testes , Perfil de Ribossomos/métodos , Ribossomos/genética , Ribossomos/metabolismo , RNA Mensageiro/genética , Internet
19.
Nat Commun ; 12(1): 1461, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674575

RESUMO

The polyglutamine expansion of huntingtin (mHTT) causes Huntington disease (HD) and neurodegeneration, but the mechanisms remain unclear. Here, we found that mHtt promotes ribosome stalling and suppresses protein synthesis in mouse HD striatal neuronal cells. Depletion of mHtt enhances protein synthesis and increases the speed of ribosomal translocation, while mHtt directly inhibits protein synthesis in vitro. Fmrp, a known regulator of ribosome stalling, is upregulated in HD, but its depletion has no discernible effect on protein synthesis or ribosome stalling in HD cells. We found interactions of ribosomal proteins and translating ribosomes with mHtt. High-resolution global ribosome footprint profiling (Ribo-Seq) and mRNA-Seq indicates a widespread shift in ribosome occupancy toward the 5' and 3' end and unique single-codon pauses on selected mRNA targets in HD cells, compared to controls. Thus, mHtt impedes ribosomal translocation during translation elongation, a mechanistic defect that can be exploited for HD therapeutics.


Assuntos
Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Fibroblastos , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Camundongos , Neurônios/metabolismo , Ribossomos/genética , Fatores de Transcrição/metabolismo , Transcriptoma , Regulação para Cima
20.
Wiley Interdiscip Rev RNA ; 11(3): e1577, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31760685

RESUMO

Since the introduction of the ribosome profiling technique in 2009 its popularity has greatly increased. It is widely used for the comprehensive assessment of gene expression and for studying the mechanisms of regulation at the translational level. As the number of ribosome profiling datasets being produced continues to grow, so too does the need for reliable software that can provide answers to the biological questions it can address. This review describes the computational methods and tools that have been developed to analyze ribosome profiling data at the different stages of the process. It starts with initial routine processing of raw data and follows with more specific tasks such as the identification of translated open reading frames, differential gene expression analysis, or evaluation of local or global codon decoding rates. The review pinpoints challenges associated with each step and explains the ways in which they are currently addressed. In addition it provides a comprehensive, albeit incomplete, list of publicly available software applicable to each step, which may be a beneficial starting point to those unexposed to ribosome profiling analysis. The outline of current challenges in ribosome profiling data analysis may inspire computational biologists to search for novel, potentially superior, solutions that will improve and expand the bioinformatician's toolbox for ribosome profiling data analysis. This article is characterized under: Translation > Ribosome Structure/Function RNA Evolution and Genomics > Computational Analyses of RNA Translation > Translation Mechanisms Translation > Translation Regulation.


Assuntos
Biologia Computacional , Ribossomos/genética , Análise de Dados , Perfilação da Expressão Gênica , Humanos , Ribossomos/metabolismo , Análise de Sequência de RNA , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA