Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Gut ; 72(6): 1081-1092, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36167663

RESUMO

OBJECTIVES: Inflammatory bowel disease (IBD) results from a combination of genetic predisposition, dysbiosis of the gut microbiota and environmental factors, leading to alterations in the gastrointestinal immune response and chronic inflammation. Caspase recruitment domain 9 (Card9), one of the IBD susceptibility genes, has been shown to protect against intestinal inflammation and fungal infection. However, the cell types and mechanisms involved in the CARD9 protective role against inflammation remain unknown. DESIGN: We used dextran sulfate sodium (DSS)-induced and adoptive transfer colitis models in total and conditional CARD9 knock-out mice to uncover which cell types play a role in the CARD9 protective phenotype. The impact of Card9 deletion on neutrophil function was assessed by an in vivo model of fungal infection and various functional assays, including endpoint dilution assay, apoptosis assay by flow cytometry, proteomics and real-time bioenergetic profile analysis (Seahorse). RESULTS: Lymphocytes are not intrinsically involved in the CARD9 protective role against colitis. CARD9 expression in neutrophils, but not in epithelial or CD11c+cells, protects against DSS-induced colitis. In the absence of CARD9, mitochondrial dysfunction increases mitochondrial reactive oxygen species production leading to the premature death of neutrophilsthrough apoptosis, especially in oxidative environment. The decreased functional neutrophils in tissues might explain the impaired containment of fungi and increased susceptibility to intestinal inflammation. CONCLUSION: These results provide new insight into the role of CARD9 in neutrophil mitochondrial function and its involvement in intestinal inflammation, paving the way for new therapeutic strategies targeting neutrophils.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Camundongos , Animais , Neutrófilos/metabolismo , Sobrevivência Celular , Colite/induzido quimicamente , Colite/prevenção & controle , Inflamação/metabolismo , Camundongos Knockout , Mitocôndrias/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Proteínas Adaptadoras de Sinalização CARD/metabolismo
2.
Gut ; 72(7): 1296-1307, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36270778

RESUMO

OBJECTIVE: The extent to which tryptophan (Trp) metabolism alterations explain or influence the outcome of inflammatory bowel diseases (IBDs) is still unclear. However, several Trp metabolism end-products are essential to intestinal homeostasis. Here, we investigated the role of metabolites from the kynurenine pathway. DESIGN: Targeted quantitative metabolomics was performed in two large human IBD cohorts (1069 patients with IBD). Dextran sodium sulphate-induced colitis experiments in mice were used to evaluate effects of identified metabolites. In vitro, ex vivo and in vivo experiments were used to decipher mechanisms involved. Effects on energy metabolism were evaluated by different methods including Single Cell mEtabolism by profiling Translation inHibition. RESULTS: In mice and humans, intestinal inflammation severity negatively correlates with the amount of xanthurenic (XANA) and kynurenic (KYNA) acids. Supplementation with XANA or KYNA decreases colitis severity through effects on intestinal epithelial cells and T cells, involving Aryl hydrocarbon Receptor (AhR) activation and the rewiring of cellular energy metabolism. Furthermore, direct modulation of the endogenous tryptophan metabolism, using the recombinant enzyme aminoadipate aminotransferase (AADAT), responsible for the generation of XANA and KYNA, was protective in rodent colitis models. CONCLUSION: Our study identified a new mechanism linking Trp metabolism to intestinal inflammation and IBD. Bringing back XANA and KYNA has protective effects involving AhR and the rewiring of the energy metabolism in intestinal epithelial cells and CD4+ T cells. This study paves the way for new therapeutic strategies aiming at pharmacologically correcting its alterations in IBD by manipulating the endogenous metabolic pathway with AADAT.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Triptofano/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Intestinos , Inflamação
3.
Environ Microbiol ; 21(11): 4020-4031, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31325218

RESUMO

Antimicrobial peptides secreted by intestinal immune and epithelial cells are important effectors of innate immunity. They play an essential role in the maintenance of intestinal homeostasis by limiting microbial epithelium interactions and preventing unnecessary microbe-driven inflammation. Pancreatitis-associated protein (PAP) belongs to Regenerating islet-derived III proteins family and is a C-type (Ca+2 dependent) lectin. PAP protein plays a protective effect presenting anti-inflammatory properties able to reduce the severity of colitis, preserving gut barrier and epithelial inflammation. Here, we sought to determine whether PAP delivered at intestinal lumen by recombinant Lactococcus lactis strain (LL-PAP) before and after chemically induced colitis is able to reduce the severity in two models of colitis. After construction and characterization of our recombinant strains, we tested their effects in dinitro-benzenesulfonic-acid (DNBS) and Dextran sulfate sodium (DSS) colitis model. After the DNBS challenge, mice treated with LL-PAP presented less severe colitis compared with PBS and LL-empty-treated mice groups. After the DSS challenge, no protective effects of LL-PAP could be detected. We determined that after 5 days administration, LL-PAP increase butyrate producer's bacteria, especially Eubacterium plexicaudatum. Based on our findings, we hypothesize that a treatment with LL-PAP shifts the microbiota preventing the severity of colon inflammation in DNBS colitis model. These protective roles of LL-PAP in DNBS colitis model might be through intestinal microbiota modulation.


Assuntos
Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Colite/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Lactococcus lactis/metabolismo , Proteínas Associadas a Pancreatite/uso terapêutico , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Benzenossulfonatos/toxicidade , Colite/induzido quimicamente , Colite/patologia , Colo/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas a Pancreatite/metabolismo , Peptídeos/metabolismo
4.
Gut ; 67(10): 1836-1844, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-28790160

RESUMO

OBJECTIVE: In association with innate and adaptive immunity, the microbiota controls the colonisation resistance against intestinal pathogens. Caspase recruitment domain 9 (CARD9), a key innate immunity gene, is required to shape a normal gut microbiota. Card9-/- mice are more susceptible to the enteric mouse pathogen Citrobacter rodentium that mimics human infections with enteropathogenic and enterohaemorrhagic Escherichia coli. Here, we examined how CARD9 controls C. rodentium infection susceptibility through microbiota-dependent and microbiota-independent mechanisms. DESIGN: C. rodentium infection was assessed in conventional and germ-free (GF) wild-type (WT) and Card9-/- mice. To explore the impact of Card9-/-microbiota in infection susceptibility, GF WT mice were colonised with WT (WT→GF) or Card9-/- (Card9-/- →GF) microbiota before C. rodentium infection. Microbiota composition was determined by 16S rDNA gene sequencing. Inflammation severity was determined by histology score and lipocalin level. Microbiota-host immune system interactions were assessed by quantitative PCR analysis. RESULTS: CARD9 controls pathogen virulence in a microbiota-independent manner by supporting a specific humoral response. Higher susceptibility to C. rodentium-induced colitis was observed in Card9-/- →GF mice. The microbiota of Card9-/- mice failed to outcompete the monosaccharide-consuming C. rodentium, worsening the infection severity. A polysaccharide-enriched diet counteracted the ecological advantage of C. rodentium and the defective pathogen-specific antibody response in Card9-/- mice. CONCLUSIONS: CARD9 modulates the susceptibility to intestinal infection by controlling the pathogen virulence in a microbiota-dependent and microbiota-independent manner. Genetic susceptibility to intestinal pathogens can be overridden by diet intervention that restores humoural immunity and a competing microbiota.


Assuntos
Proteínas Adaptadoras de Sinalização CARD , Colite , Microbioma Gastrointestinal/fisiologia , Polissacarídeos , Imunidade Adaptativa/fisiologia , Animais , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Citrobacter rodentium/efeitos dos fármacos , Citrobacter rodentium/patogenicidade , Colite/imunologia , Colite/microbiologia , Dietoterapia/métodos , Interação Gene-Ambiente , Predisposição Genética para Doença , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/fisiologia , Camundongos , Polissacarídeos/efeitos adversos , Polissacarídeos/metabolismo , Virulência/fisiologia
5.
Eur J Immunol ; 46(9): 2162-74, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27338553

RESUMO

Invariant NKT (iNKT) cells differentiate in the thymus into three distinct lineages defined by their cytokine and transcription factor expression. Signaling lymphocyte activation molecule (SLAM)-associated protein (SAP) is essential for early stages of iNKT cell development, but its role during terminal differentiation of iNKT1, iNKT2, or iNKT17 cells remains unclear. Taking advantage of SAP-deficient mice expressing a Vα14-Jα18 TCRα transgene, we found that SAP is critical not only for IL-4 production but also for the terminal differentiation of IL-4-producing iNKT2 cells. Furthermore, without SAP, the IL-17 producing subset is expanded, while IFN-γ-producing iNKT1 differentiation is only moderately compromised. Lack of SAP reduced the expression of the transcription factors GATA-3 and promyelocytic leukemia zinc finger, but enhanced the levels of retinoic acid receptor-related orphan receptor γt. In the absence of SAP, lineage commitment was actually shifted toward the emergence of iNKT17 over iNKT2 cells. Collectively, our data unveil a new critical regulatory function for SAP in thymic iNKT cell fate decisions.


Assuntos
Diferenciação Celular/imunologia , Células T Matadoras Naturais/citologia , Células T Matadoras Naturais/metabolismo , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/metabolismo , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/metabolismo , Animais , Biomarcadores , Células Cultivadas , Imunofenotipagem , Interleucina-17/biossíntese , Interleucina-4/biossíntese , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Fenótipo , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/deficiência , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/genética
6.
J Immunol ; 192(12): 5635-42, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24808372

RESUMO

Naive CD4 lymphocytes undergo a polarization process in the periphery to become induced Th17 (iTh17) cells. Using retinoic acid-related orphan receptor γt (RORγt)-gfp mice, we found that RORγt and the transcription factor promyelocytic leukemia zinc finger (PLZF) are valuable new markers to identify the recently described natural Th17 (nTh17) cell population. nTh17 cells are thymically committed to promptly produce large amounts of IL-17 and IL-22. In this study, we show that, in addition to responding to TCR cross-linking, nTh17 cells secrete IL-17 and IL-22 when stimulated with IL-23 plus IL-1ß, either in recombinant form or in supernatants from TLR4-activated dendritic cells. This innate-like ability of RORγt(+) nTh17 cells to respond to TLR4-induced cytokines was not shared by iTh17 cells. The other distinct properties of RORγt(+) nTh17 cells are their high expression of PLZF and their absence from lamina propria; iTh17 cells are found therein. RORγt(+) nTh17 cells are present in the thymus of germ-free RORγt-gfp and IL-6(-/-) RORΓ: t-gfp mice, indicating that these cells do not require symbiotic microbiota or IL-6 for their generation. Finally, we found that PLZF(+)RORγt(+) nTh17 cells represent one of the primary IL-17-producing innate-like T cell populations in a TLR7 imiquimod model of psoriasis-like disorder, indicating their involvement in this kind of lesion. Collectively, our results reveal RORγt and PLZF as characteristic markers for identifying nTh17 cells and demonstrate one of their novel properties: the ability to respond promptly to TLR-dependent proinflammatory stimuli without TCR engagement, placing them as members of the innate-like T cell family.


Assuntos
Citocinas/imunologia , Psoríase/imunologia , Células Th17/imunologia , Receptor 4 Toll-Like/imunologia , Adjuvantes Imunológicos/efeitos adversos , Adjuvantes Imunológicos/farmacologia , Aminoquinolinas/efeitos adversos , Aminoquinolinas/farmacologia , Animais , Citocinas/genética , Imiquimode , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/imunologia , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/imunologia , Camundongos , Camundongos Knockout , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Proteína com Dedos de Zinco da Leucemia Promielocítica , Psoríase/induzido quimicamente , Psoríase/genética , Psoríase/patologia , Células Th17/patologia , Receptor 4 Toll-Like/genética
7.
Proc Natl Acad Sci U S A ; 109(43): 17549-54, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23047700

RESUMO

IL-17-producing CD27(-) γδ cells (γδ(27-) cells) are widely viewed as innate immune cells that make critical contributions to host protection and autoimmunity. However, factors that promote them over IFN-γ-producing γδ(27+) cells are poorly elucidated. Moreover, although human IL-17-producing γδ cells are commonly implicated in inflammation, such cells themselves have proved difficult to isolate and characterize. Here, murine γδ(27-) T cells and thymocytes are shown to be rapidly and substantially expanded by IL-7 in vitro and in vivo. This selectivity owes in substantial part to the capacity of IL-7 to activate STAT3 in such cells. Additionally, IL-7 promotes strong responses of IL-17-producing γδ cells to TCR agonists, thus reemphasizing the cells' adaptive and innate potentials. Moreover, human IL-17-producing γδ cells are also substantially expanded by IL-7 plus TCR agonists. Hence, IL-7 has a conserved potential to preferentially regulate IL-17-producing γδ cells, with both biological and clinical implications.


Assuntos
Interleucina-17/biossíntese , Interleucina-7/fisiologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T/metabolismo , Animais , Células Cultivadas , Humanos , Camundongos
8.
J Exp Med ; 204(5): 995-1001, 2007 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-17470641

RESUMO

Invariant natural killer T (iNKT) cells are an important source of both T helper type 1 (Th1) and Th2 cytokines, through which they can exert beneficial, as well as deleterious, effects in a variety of inflammatory diseases. This functional heterogeneity raises the question of how far phenotypically distinct subpopulations are responsible for such contrasting activities. In this study, we identify a particular set of iNKT cells that lack the NK1.1 marker (NK1.1(neg)) and secrete high amounts of interleukin (IL)-17 and low levels of interferon (IFN)-gamma and IL-4. NK1.1(neg) iNKT cells produce IL-17 upon synthetic (alpha-galactosylceramide [alpha-GalCer] or PBS-57), as well as natural (lipopolysaccharides or glycolipids derived from Sphingomonas wittichii and Borrelia burgdorferi), ligand stimulation. NK1.1(neg) iNKT cells are more frequent in the lung, which is consistent with a role in the natural immunity to inhaled antigens. Indeed, airway neutrophilia induced by alpha-GalCer or lipopolysaccharide instillation was significantly reduced in iNKT-cell-deficient Jalpha18(-/-) mice, which produced significantly less IL-17 in their bronchoalveolar lavage fluid than wild-type controls. Furthermore, airway neutrophilia was abolished by a single treatment with neutralizing monoclonal antibody against IL-17 before alpha-GalCer administration. Collectively, our findings reveal that NK1.1(neg) iNKT lymphocytes represent a new population of IL-17-producing cells that can contribute to neutrophil recruitment through preferential IL-17 secretion.


Assuntos
Interleucina-17/metabolismo , Células Matadoras Naturais/imunologia , Pulmão/imunologia , Subpopulações de Linfócitos/imunologia , Infiltração de Neutrófilos/imunologia , Animais , Anticorpos Monoclonais , Antígenos Ly , Antígenos de Superfície/genética , Líquido da Lavagem Broncoalveolar/imunologia , Células Cultivadas , Citometria de Fluxo , Galactosilceramidas , Glicolipídeos , Células Matadoras Naturais/metabolismo , Lectinas Tipo C/genética , Camundongos , Camundongos Endogâmicos C57BL , Subfamília B de Receptores Semelhantes a Lectina de Células NK
9.
Front Med (Lausanne) ; 10: 1087715, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601783

RESUMO

Introduction: Antibiotic effects on gut bacteria have been widely studied, but very little is known about the consequences of such treatments on the mycobiota, the fungal part of the microbiota and how the length of administration influences both microbiota. Here, we examined the effect of antibiotics (ATB) on the composition of bacterial and fungal microbiota and how the administration of Saccharomyces boulardii CNCM I-745 influences both microbiota. Methods: In order to get closer to the human microbiota, the mice used in this study were subjected to fecal microbiota transfer (FMT) using human feces and subsequently called human microbiotaassociated (HMA) mice. These mice were then treated with amoxicillinclavulanate antibiotics and supplemented with S. boulardii during and after ATB treatment to understand the effect of the yeast probiotic on both bacterial and fungal microbiota. Bacterial and fungal microbiota analyses were done using 16S and ITS2 rRNA amplicon-based sequencing. Results: We showed that the administration of S. boulardii during ATB treatment had very limited effect on the fungal populations on the long term, once the yeast probiotic has been cleared from the gut. Concerning bacterial microbiota, S. boulardii administration allowed a better recovery of bacterial populations after the end of the ATB treatment period. Additionally, 16S and ITS2 rRNA sequence analysis revealed that 7 additional days of S. boulardii administration (17 days in total) enhanced the return of the initial bacterial equilibrium. Discussion: In this study, we provide a comprehensive analysis of how probiotic yeast administration can influence the fungal and bacterial microbiota in a model of broad-spectrum antibiotherapy.

10.
Front Immunol ; 14: 1098160, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304256

RESUMO

Introduction: Staphylococcus epidermidis is a commensal bacterium ubiquitously present on human skin. This species is considered as a key member of the healthy skin microbiota, involved in the defense against pathogens, modulating the immune system, and involved in wound repair. Simultaneously, S. epidermidis is the second cause of nosocomial infections and an overgrowth of S. epidermidis has been described in skin disorders such as atopic dermatitis. Diverse isolates of S. epidermidis co-exist on the skin. Elucidating the genetic and phenotypic specificities of these species in skin health and disease is key to better understand their role in various skin conditions. Additionally, the exact mechanisms by which commensals interact with host cells is partially understood. We hypothesized that S. epidermidis isolates identified from different skin origins could play distinct roles on skin differentiation and that these effects could be mediated by the aryl hydrocarbon receptor (AhR) pathway. Methods: For this purpose, a library of 12 strains originated from healthy skin (non-hyperseborrheic (NH) and hyperseborrheic (H) skin types) and disease skin (atopic (AD) skin type) was characterized at the genomic and phenotypic levels. Results and discussion: Here we showed that strains from atopic lesional skin alter the epidermis structure of a 3D reconstructed skin model whereas strains from NH healthy skin do not. All strains from NH healthy skin induced AhR/OVOL1 path and produced high quantities of indole metabolites in co-culture with NHEK; especially indole-3-aldehyde (IAld) and indole-3-lactic acid (ILA); while AD strains did not induce AhR/OVOL1 path but its inhibitor STAT6 and produced the lowest levels of indoles as compared to the other strains. As a consequence, strains from AD skin altered the differentiation markers FLG and DSG1. The results presented here, on a library of 12 strains, showed that S. epidermidis originated from NH healthy skin and atopic skin have opposite effects on the epidermal cohesion and structure and that these differences could be linked to their capacity to produce metabolites, which in turn could activate AHR pathway. Our results on a specific library of strains provide new insights into how S. epidermidis may interact with the skin to promote health or disease.


Assuntos
Dermatite Atópica , Staphylococcus epidermidis , Humanos , Promoção da Saúde , Receptores de Hidrocarboneto Arílico , Pele
11.
mSystems ; 8(6): e0084123, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37882535

RESUMO

IMPORTANCE: The food industry has always used many strains of microorganisms including fungi in their production processes. These strains have been widely characterized for their biotechnological value, but we still know very little about their interaction capacities with the host at a time when the intestinal microbiota is at the center of many pathologies. In this study, we characterized five yeast strains from food production which allowed us to identify two new strains with high probiotic potential and beneficial effects in a model of intestinal inflammation.


Assuntos
Kluyveromyces , Probióticos , Candida , Inflamação , Probióticos/uso terapêutico
12.
Microbiome ; 11(1): 73, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37032359

RESUMO

BACKGROUND: Effects of antibiotics on gut bacteria have been widely studied, but very little is known about the consequences of such treatments on the fungal microbiota (mycobiota). It is commonly believed that fungal load increases in the gastrointestinal tract following antibiotic treatment, but better characterization is clearly needed of how antibiotics directly or indirectly affect the mycobiota and thus the entire microbiota. DESIGN: We used samples from humans (infant cohort) and mice (conventional and human microbiota-associated mice) to study the consequences of antibiotic treatment (amoxicillin-clavulanic acid) on the intestinal microbiota. Bacterial and fungal communities were subjected to qPCR or 16S and ITS2 amplicon-based sequencing for microbiota analysis. In vitro assays further characterized bacterial-fungal interactions, with mixed cultures between specific bacteria and fungi. RESULTS: Amoxicillin-clavulanic acid treatment triggered a decrease in the total fungal population in mouse feces, while other antibiotics had opposite effects on the fungal load. This decrease is accompanied by a total remodelling of the fungal population with the enrichment in Aspergillus, Cladosporium, and Valsa genera. In the presence of amoxicillin-clavulanic acid, microbiota analysis showed a remodeling of bacterial microbiota with an increase in specific bacteria belonging to the Enterobacteriaceae. Using in vitro assays, we isolated different Enterobacteriaceae species and explored their effect on different fungal strains. We showed that Enterobacter hormaechei was able to reduce the fungal population in vitro and in vivo through yet unknown mechanisms. CONCLUSIONS: Bacteria and fungi have strong interactions within the microbiota; hence, the perturbation initiated by an antibiotic treatment targeting the bacterial community can have complex consequences and can induce opposite alterations of the mycobiota. Interestingly, amoxicillin-clavulanic acid treatment has a deleterious effect on the fungal community, which may have been partially due to the overgrowth of specific bacterial strains with inhibiting or competing effects on fungi. This study provides new insights into the interactions between fungi and bacteria of the intestinal microbiota and might offer new strategies to modulate gut microbiota equilibrium. Video Abstract.


Assuntos
Combinação Amoxicilina e Clavulanato de Potássio , Microbiota , Humanos , Camundongos , Animais , Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , Antibacterianos/farmacologia , Trato Gastrointestinal/microbiologia , Fungos , Bactérias/genética
13.
Eur J Immunol ; 41(12): 3574-85, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22002883

RESUMO

Invariant natural killer T (iNKT) cells are a distinct lineage of innate-like T lymphocytes and converging studies in mouse models have demonstrated the protective role of iNKT cells in the development of type 1 diabetes. Recently, a new subset of iNKT cells, producing high levels of the pro-inflammatory cytokine IL-17, has been identified (iNKT17 cells). Since this cytokine has been implicated in several autoimmune diseases, we have analyzed iNKT17 cell frequency, absolute number and phenotypes in the pancreas and lymphoid organs in non-obese diabetic (NOD) mice. The role of iNKT17 cells in the development of diabetes was investigated using transfer experiments. NOD mice exhibit a higher frequency and absolute number of iNKT17 cells in the lymphoid organs as compared with C57BL/6 mice. iNKT17 cells infiltrate the pancreas of NOD mice where they express IL-17 mRNA. Contrary to the protective role of CD4(+) iNKT cells, the CD4(-) iNKT cell population, which contains iNKT17 cells, enhances the incidence of diabetes. Treatment with a blocking anti-IL-17 antibody prevents the exacerbation of the disease. This study reveals that different iNKT cell subsets play distinct roles in the regulation of type 1 diabetes and iNKT17 cells, which are abundant in NOD mice, exacerbate diabetes development.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Interleucina-17/imunologia , Células T Matadoras Naturais/imunologia , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Antígenos CD4/imunologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Feminino , Interleucina-17/biossíntese , Interleucina-17/genética , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Células T Matadoras Naturais/metabolismo , Pâncreas/imunologia , Pâncreas/metabolismo , Fenótipo , RNA Mensageiro/genética
14.
Cell Host Microbe ; 30(10): 1349-1351, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36228583

RESUMO

In a recent Science issue, Bousbaine et al. (2022) identified ß-N-acetylhexosaminidase, a conserved antigen expressed by commensals that drives expansion and differentiation of intestinal intra-epithelial cells and protects against gut inflammation.


Assuntos
Simbiose , beta-N-Acetil-Hexosaminidases , Intestinos
15.
Nutrients ; 14(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35215440

RESUMO

Symptom occurrence at the first ingestion suggests that food allergy may result from earlier sensitization via non-oral routes. We aimed to characterize the cellular populations recruited at various mucosal and immune sites after experimental sensitization though different routes. BALB/cJ mice were exposed to a major allergenic food (peanut) mixed with cholera toxin via the intra-gastric (i.g.), respiratory, cutaneous, or intra-peritoneal (i.p.) route. We assessed sensitization and elicitation of the allergic reaction and frequencies of T cells, innate lymphoid cells (ILC), and inflammatory and dendritic cells (DC) in broncho-alveolar lavages (BAL), lungs, skin, intestine, and various lymph nodes. All cellular data were analyzed through non-supervised and supervised uni/multivariate analysis. All exposure routes, except cutaneous, induced sensitization, but intestinal allergy was induced only in i.g.- and i.p.-exposed mice. Multivariate analysis of all cellular constituents did not discriminate i.g. from control mice. Conversely, respiratory-sensitized mice constituted a distinct cluster, characterized by high local inflammation and immune cells recruitment. Those mice also evidenced changes in ILC frequencies at distant site (intestine). Despite absence of sensitization, cutaneous-exposed mice evidenced comparable changes, albeit less intense. Our study highlights that the initial route of sensitization to a food allergen influences the nature of the immune responses at various mucosal sites. Interconnections of mucosal immune systems may participate in the complexity of clinical manifestations as well as in the atopic march.


Assuntos
Arachis , Hipersensibilidade Alimentar , Alérgenos , Animais , Modelos Animais de Doenças , Imunidade Inata , Linfócitos , Camundongos , Camundongos Endogâmicos BALB C
16.
Microbiome ; 10(1): 91, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35698210

RESUMO

BACKGROUND: Innate immunity genes have been reported to affect susceptibility to inflammatory bowel diseases (IBDs) and colitis in mice. Dectin-1, a receptor for fungal cell wall ß-glucans, has been clearly implicated in gut microbiota modulation and modification of the susceptibility to gut inflammation. Here, we explored the role of Dectin-1 and Dectin-2 (another receptor for fungal cell wall molecules) deficiency in intestinal inflammation. DESIGN: Susceptibility to dextran sodium sulfate (DSS)-induced colitis was assessed in wild-type, Dectin-1 knockout (KO), Dectin-2KO, and double Dectin-1KO and Dectin-2KO (D-1/2KO) mice. Inflammation severity, as well as bacterial and fungal microbiota compositions, was monitored. RESULTS: While deletion of Dectin-1 or Dectin-2 did not have a strong effect on DSS-induced colitis, double deletion of Dectin-1 and Dectin-2 significantly protected the mice from colitis. The protection was largely mediated by the gut microbiota, as demonstrated by fecal transfer experiments. Treatment of D-1/2KO mice with opportunistic fungal pathogens or antifungal agents did not affect the protection against gut inflammation, suggesting that the fungal microbiota had no role in the protective phenotype. Amplicon-based microbiota analysis of the fecal bacterial and fungal microbiota of D-1/2KO mice confirmed the absence of changes in the mycobiota but strong modification of the bacterial microbiota. We showed that bacteria from the Lachnospiraceae family were at least partly involved in this protection and that treatment with Blautia hansenii was enough to recapitulate the protection. CONCLUSIONS: Deletion of both the Dectin-1 and Dectin-2 receptors triggered a global shift in the microbial gut environment, affecting, surprisingly, mainly the bacterial population and driving protective effects in colitis. Members of the Lachnospiraceae family seem to play a central role in this protection. These findings provide new insights into the role of the Dectin receptors, which have been described to date as affecting only the fungal population, in intestinal physiopathology and in IBD. Video Abstract.


Assuntos
Colite , Microbioma Gastrointestinal , Micobioma , Animais , Bactérias/genética , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Inflamação , Lectinas Tipo C/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
17.
J Fungi (Basel) ; 8(9)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36135618

RESUMO

Food processes use different microorganisms, from bacteria to fungi. Yeast strains have been extensively studied, especially Saccharomyces cerevisiae. However, to date, very little is known about the potential beneficial effects of molds on gut health as part of gut microbiota. We undertook a comprehensive characterization of five mold strains, Penicillium camemberti, P. nalgiovense, P. roqueforti, Fusarium domesticum, and Geotrichum candidum used in food processes, on their ability to trigger or protect intestinal inflammation using in vitro human cell models and in vivo susceptibility to sodium dextran sulfate-induced colitis. Comparison of spore adhesion to epithelial cells showed a very wide disparity in results, with F. domesticum and P. roqueforti being the two extremes, with almost no adhesion and 20% adhesion, respectively. Interaction with human immune cells showed mild pro-inflammatory properties of all Penicillium strains and no effect of the others. However, the potential anti-inflammatory abilities detected for G. candidum in vitro were not confirmed in vivo after oral gavage to mice before and during induced colitis. According to the different series of experiments carried out in this study, the impact of the spores of these molds used in food production is limited, with no specific beneficial or harmful effect on the gut.

18.
J Immunol ; 182(3): 1233-6, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19155466

RESUMO

Histamine (HA) is a biogenic amine with multiple activities in the immune system. In this study we demonstrate that histamine-free histidine decarboxylase-deficient (HDC(-/-)) mice present a numerical and functional deficit in invariant NK T (iNKT) cells as evidenced by a drastic decrease of IL-4 and IFN-gamma production. This deficiency was established both by measuring cytokine levels in the serum and intracellularly among gated iNKT cells. It resulted from the lack of HA, because a single injection of this amine into HDC(-/-) mice sufficed to restore normal IL-4 and IFN-gamma production. HA-induced functional recovery was mediated mainly through the H4 histamine receptor (H4R), as assessed by its abrogation after a single injection of a selective H4R antagonist and the demonstration of a similar iNKT cell deficit in H4R(-/-) mice. Our findings identify a novel function of HA through its H4R and suggest that it might become instrumental in modulating iNKT cell functions.


Assuntos
Interferon gama/biossíntese , Interleucina-4/biossíntese , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Histamínicos/metabolismo , Animais , Reagentes de Ligações Cruzadas/metabolismo , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Variação Genética/imunologia , Histamina/administração & dosagem , Histamina/deficiência , Histidina Descarboxilase/deficiência , Histidina Descarboxilase/genética , Histidina Descarboxilase/fisiologia , Interferon gama/antagonistas & inibidores , Interleucina-4/antagonistas & inibidores , Contagem de Linfócitos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Receptores Histamínicos/deficiência , Receptores Histamínicos/genética , Receptores Histamínicos H4
19.
Proc Natl Acad Sci U S A ; 105(50): 19845-50, 2008 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-19057011

RESUMO

Invariant natural killer T (iNKT) cells constitute a subpopulation of T cells that recognize glycolipids presented by CD1d molecules. They are characterized by their prompt production of interleukin-4 (IL-4) and interferon-gamma (IFN-gamma), which enables them to modulate diverse immune responses. Recently, we enlarged this concept by identifying a distinct IL-17-producing iNKT cell subset, named iNKT17 cells. The mechanisms leading to the acquisition of this new iNKT cell activity are unknown. Herein we show that IL-17-producing iNKT cells are already present in the thymus, predominantly among a subset regarded so far as an immature stage of thymic iNKT cell development, the CD1d tetramer(pos)CD44(pos)NK1.1(neg)CD4(neg) cells. Using EGFP reporter mice, we demonstrate that the transcription factor ROR-gammat is critical for the thymic differentiation of this subset because only ROR-gammat(pos) iNKT cells are capable of massively secreting IL-17. Moreover, IL-17-producing CD1d tetramer(pos)CD44(pos)NK1.1(neg)CD4(neg) thymic iNKT cells have reached a mature differentiation stage because they fail to generate other cell subsets in fetal thymic organ culture. Conversely, thymic ROR-gammat(neg) iNKT cell precursors give rise to progeny, but acquire neither ROR-gammat expression nor the ability to secrete IL-17. In conclusion, our findings demonstrate an alternative thymic pathway leading to the development of iNKT17 cells that requires ROR-gammat expression.


Assuntos
Interleucina-17/metabolismo , Ativação Linfocitária , Células T Matadoras Naturais/imunologia , Receptores do Ácido Retinoico/fisiologia , Receptores dos Hormônios Tireóideos/fisiologia , Timo/imunologia , Animais , Diferenciação Celular/genética , Galactosilceramidas/imunologia , Proteínas de Fluorescência Verde/genética , Ativação Linfocitária/genética , Masculino , Camundongos , Camundongos Transgênicos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Receptores do Ácido Retinoico/genética , Receptores dos Hormônios Tireóideos/genética
20.
Cell Rep ; 36(1): 109332, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34233192

RESUMO

Gut interleukin-17A (IL-17)-producing γδ T cells are tissue-resident cells that are involved in both host defense and regulation of intestinal inflammation. However, factors that regulate their functions are poorly understood. In this study, we find that the gut microbiota represses IL-17 production by cecal γδ T cells. Treatment with vancomycin, a Gram-positive bacterium-targeting antibiotic, leads to decreased production of short-chain fatty acids (SCFAs) by the gut microbiota. Our data reveal that these microbiota-derived metabolites, particularly propionate, reduce IL-17 and IL-22 production by intestinal γδ T cells. Propionate acts directly on γδ T cells to inhibit their production of IL-17 in a histone deacetylase-dependent manner. Moreover, the production of IL-17 by human IL-17-producing γδ T cells from patients with inflammatory bowel disease (IBD) is regulated by propionate. These data contribute to a better understanding of the mechanisms regulating gut γδ T cell functions and offer therapeutic perspectives of these cells.


Assuntos
Ácidos Graxos Voláteis/farmacologia , Microbioma Gastrointestinal , Interleucina-17/biossíntese , Intestinos/citologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Adulto , Animais , Ceco/citologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Inibidores de Histona Desacetilases/farmacologia , Humanos , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Interleucinas/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Vancomicina/farmacologia , Interleucina 22
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA