Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 616(7957): 457-460, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36858075

RESUMO

The NASA Double Asteroid Redirection Test (DART) mission performed a kinetic impact on asteroid Dimorphos, the satellite of the binary asteroid (65803) Didymos, at 23:14 UTC on 26 September 2022 as a planetary defence test1. DART was the first hypervelocity impact experiment on an asteroid at size and velocity scales relevant to planetary defence, intended to validate kinetic impact as a means of asteroid deflection. Here we report a determination of the momentum transferred to an asteroid by kinetic impact. On the basis of the change in the binary orbit period2, we find an instantaneous reduction in Dimorphos's along-track orbital velocity component of 2.70 ± 0.10 mm s-1, indicating enhanced momentum transfer due to recoil from ejecta streams produced by the impact3,4. For a Dimorphos bulk density range of 1,500 to 3,300 kg m-3, we find that the expected value of the momentum enhancement factor, ß, ranges between 2.2 and 4.9, depending on the mass of Dimorphos. If Dimorphos and Didymos are assumed to have equal densities of 2,400 kg m-3, [Formula: see text]. These ß values indicate that substantially more momentum was transferred to Dimorphos from the escaping impact ejecta than was incident with DART. Therefore, the DART kinetic impact was highly effective in deflecting the asteroid Dimorphos.

2.
Glia ; 72(3): 529-545, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38013496

RESUMO

To study the anti-inflammatory potential of the two synthetic cannabinoids 4'-F-CBD and HU-910, we used post-natal brain cultures of mouse microglial cells and astrocytes activated by reference inflammogens. We found that 4'-F-CBD and HU-910 efficiently curtailed the release of TNF-α, IL-6, and IL-1ß in microglia and astrocytes activated by the bacterial Toll-Like Receptor (TLR)4 ligand LPS. Upon LPS challenge, 4'-F-CBD and HU-910 also prevented the activation of phenotypic activation markers specific to microglia and astrocytes, that is, Iba-1 and GFAP, respectively. In microglial cells, the two test compounds also efficiently restrained LPS-stimulated release of glutamate, a non-cytokine inflammation marker for these cells. The immunosuppressive effects of the two cannabinoid compounds were concentration-dependent and observable between 1 and 10 µM. These effects were not dependent on cannabinoid or cannabinoid-like receptors. Both 4'-F-CBD and HU-910 were also capable of restraining the inflammogenic activity of Pam3CSK4, a lipopeptide that activates TLR2, and of BzATP, a prototypic agonist of P2X7 purinergic receptors, suggesting that these two cannabinoids could exert immunosuppressive effects against a variety of inflammatory stimuli. Using LPS-stimulated microglia and astrocytes, we established that the immunosuppressive action of 4'-F-CBD and HU-910 resulted from the inhibition of ROS produced by NADPH oxidase and subsequent repression of NF-κB-dependent signaling events. Our results suggest that 4'-F-CBD and HU-910 may have therapeutic utility in pathological conditions where neuroinflammatory processes are prominent.


Assuntos
Compostos Bicíclicos com Pontes , Canabidiol/análogos & derivados , Canabinoides , Microglia , Camundongos , Animais , Astrócitos , Lipopolissacarídeos/toxicidade , Canabinoides/farmacologia , Encéfalo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico
3.
J Neuroinflammation ; 21(1): 54, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383421

RESUMO

Parkinson's disease (PD) is a common age-related neurodegenerative disorder characterized by the aggregation of α-Synuclein (αSYN) building up intraneuronal inclusions termed Lewy pathology. Mounting evidence suggests that neuron-released αSYN aggregates could be central to microglial activation, which in turn mounts and orchestrates neuroinflammatory processes potentially harmful to neurons. Therefore, understanding the mechanisms that drive microglial cell activation, polarization and function in PD might have important therapeutic implications. Here, using primary microglia, we investigated the inflammatory potential of pure αSYN fibrils derived from PD patients. We further explored and characterized microglial cell responses to a chronic-type inflammatory stimulation combining PD patient-derived αSYN fibrils (FPD), Tumor necrosis factor-α (TNFα) and prostaglandin E2 (PGE2) (TPFPD). We showed that FPD hold stronger inflammatory potency than pure αSYN fibrils generated de novo. When combined with TNFα and PGE2, FPD polarizes microglia toward a particular functional phenotype departing from FPD-treated cells and featuring lower inflammatory cytokine and higher glutamate release. Whereas metabolomic studies showed that TPFPD-exposed microglia were closely related to classically activated M1 proinflammatory cells, notably with similar tricarboxylic acid cycle disruption, transcriptomic analysis revealed that TPFPD-activated microglia assume a unique molecular signature highlighting upregulation of genes involved in glutathione and iron metabolisms. In particular, TPFPD-specific upregulation of Slc7a11 (which encodes the cystine-glutamate antiporter xCT) was consistent with the increased glutamate response and cytotoxic activity of these cells toward midbrain dopaminergic neurons in vitro. Together, these data further extend the structure-pathological relationship of αSYN fibrillar polymorphs to their innate immune properties and demonstrate that PD-derived αSYN fibrils, TNFα and PGE2 act in concert to drive microglial cell activation toward a specific and highly neurotoxic chronic-type inflammatory phenotype characterized by robust glutamate release and iron retention.


Assuntos
Síndromes Neurotóxicas , Doença de Parkinson , Humanos , Doença de Parkinson/patologia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Microglia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Sinais (Psicologia) , Inflamação/metabolismo , Neurônios Dopaminérgicos/patologia , Síndromes Neurotóxicas/metabolismo , Glutamatos/metabolismo , Ferro/metabolismo
4.
J Neural Transm (Vienna) ; 131(1): 1-11, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37851107

RESUMO

Over the years, evidence has accumulated on a possible contributive role of the cytosolic quinone reductase NQO2 in models of dopamine neuron degeneration induced by parkinsonian toxin, but most of the data have been obtained in vitro. For this reason, we asked the question whether NQO2 is involved in the in vivo toxicity of MPTP, a neurotoxin classically used to model Parkinson disease-induced neurodegeneration. First, we show that NQO2 is expressed in mouse substantia nigra dopaminergic cell bodies and in human dopaminergic SH-SY5Y cells as well. A highly specific NQO2 inhibitor, S29434, was able to reduce MPTP-induced cell death in a co-culture system of SH-SY5Y cells with astrocytoma U373 cells but was inactive in SH-SY5Y monocultures. We found that S29434 only marginally prevents substantia nigra tyrosine hydroxylase+ cell loss after MPTP intoxication in vivo. The compound produced a slight increase of dopaminergic cell survival at day 7 and 21 following MPTP treatment, especially with 1.5 and 3 mg/kg dosage regimen. The rescue effect did not reach statistical significance (except for one experiment at day 7) and tended to decrease with the 4.5 mg/kg dose, at the latest time point. Despite the lack of robust protective activity of the inhibitor of NQO2 in the mouse MPTP model, we cannot rule out a possible role of the enzyme in parkinsonian degeneration, particularly because it is substantially expressed in dopaminergic neurons.


Assuntos
Intoxicação por MPTP , Neuroblastoma , Camundongos , Humanos , Animais , Neurônios Dopaminérgicos/metabolismo , Substância Negra/metabolismo , Dopamina/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
5.
Mov Disord ; 37(12): 2355-2366, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36210778

RESUMO

BACKGROUND: High consumption of Annona muricata fruit has been previously identified as a risk factor for atypical parkinsonism in the French Caribbean islands. OBJECTIVE: We tested whether consumption of Annonaceae products could worsen the clinical phenotype of patients with any form of degenerative parkinsonism. METHODS: We analyzed neurological data from 180 Caribbean parkinsonian patients and specifically looked for dose effects of lifelong, cumulative Annonaceae consumption on cognitive performance. Using unsupervised clustering, we identified one cluster with mild/moderate symptoms (N = 102) and one with severe symptoms including cognitive impairment (N = 78). RESULTS: We showed that even low cumulative consumption of fruits/juices (>0.2 fruit-years) or any consumption of herbal tea from Annonaceae worsen disease severity and cognitive deficits in degenerative parkinsonism including Parkinson's disease (OR fruits-juices: 3.76 [95% CI: 1.13-15.18]; OR herbal tea: 2.91 [95% CI: 1.34-6.56]). CONCLUSION: We suggest that more restrictive public health preventive recommendations should be made regarding the consumption of Annonaceae products. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Annonaceae , Disfunção Cognitiva , Transtornos Parkinsonianos , Chás de Ervas , Annonaceae/efeitos adversos , Transtornos Parkinsonianos/complicações , Transtornos Parkinsonianos/epidemiologia , Gravidade do Paciente , Disfunção Cognitiva/complicações , Cognição
6.
Nanotechnology ; 33(23)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35133295

RESUMO

Hybrid organic-inorganic nanomaterials composed of organic semiconductors and inorganic quantum dots (QDs) are promising candidates for opto-electronic devices in a sustainable internet of things. Especially their ability to combine the advantages of both compounds in one material with new functionality, the energy-efficient production possibility and the applicability in thin films with little resource consumption are key benefits of these materials. However, a major challenge one is facing for these hybrid materials is the lack of a detailed understanding of the organic-inorganic interface which hampers the widespread application in devices. We advance the understanding of this interface by studying the short-range organization and binding motif of aryleneethynylenes coupled to CdSe QDs as an example system with various experimental methods. Clear evidence for an incorporation of the organic ligands in between the inorganic QDs is found, and polarization-modulation infrared reflection-absorption spectroscopy is shown to be a powerful technique to directly detect the binding in such hybrid thin-film systems. A monodentate binding and a connection of neighboring QDs by the aryleneethynylene molecules is identified. Using steady-state and time resolved spectroscopy, we further investigated the photophysics of these hybrid systems. Different passivation capabilities resulting in different decay dynamics of the QDs turned out to be the main influence of the ligands on the photophysics.

7.
Nature ; 530(7590): 303-6, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26887492

RESUMO

Most near-Earth objects came from the asteroid belt and drifted via non-gravitational thermal forces into resonant escape routes that, in turn, pushed them onto planet-crossing orbits. Models predict that numerous asteroids should be found on orbits that closely approach the Sun, but few have been seen. In addition, even though the near-Earth-object population in general is an even mix of low-albedo (less than ten per cent of incident radiation is reflected) and high-albedo (more than ten per cent of incident radiation is reflected) asteroids, the characterized asteroids near the Sun typically have high albedos. Here we report a quantitative comparison of actual asteroid detections and a near-Earth-object model (which accounts for observational selection effects). We conclude that the deficit of low-albedo objects near the Sun arises from the super-catastrophic breakup (that is, almost complete disintegration) of a substantial fraction of asteroids when they achieve perihelion distances of a few tens of solar radii. The distance at which destruction occurs is greater for smaller asteroids, and their temperatures during perihelion passages are too low for evaporation to explain their disappearance. Although both bright and dark (high- and low-albedo) asteroids eventually break up, we find that low-albedo asteroids are more likely to be destroyed farther from the Sun, which explains the apparent excess of high-albedo near-Earth objects and suggests that low-albedo asteroids break up more easily as a result of thermal effects.

8.
Neurobiol Dis ; 151: 105256, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33429042

RESUMO

Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are neurodegenerative disorders characterized by the misfolding and aggregation of alpha-synuclein (aSyn). Doxycycline, a tetracyclic antibiotic shows neuroprotective effects, initially proposed to be due to its anti-inflammatory properties. More recently, an additional mechanism by which doxycycline may exert its neuroprotective effects has been proposed as it has been shown that it inhibits amyloid aggregation. Here, we studied the effects of doxycycline on aSyn aggregation in vivo, in vitro and in a cell free system using real-time quaking induced conversion (RT-QuiC). Using H4, SH-SY5Y and HEK293 cells, we found that doxycycline decreases the number and size of aSyn aggregates in cells. In addition, doxycycline inhibits the aggregation and seeding of recombinant aSyn, and attenuates the production of mitochondrial-derived reactive oxygen species. Finally, we found that doxycycline induces a cellular redistribution of aggregates in a C.elegans animal model of PD, an effect that is associated with a recovery of dopaminergic function. In summary, we provide strong evidence that doxycycline treatment may be an effective strategy against synucleinopathies.


Assuntos
Doxiciclina/farmacologia , Fármacos Neuroprotetores/farmacologia , Agregação Patológica de Proteínas/patologia , Sinucleinopatias/patologia , alfa-Sinucleína/efeitos dos fármacos , Animais , Caenorhabditis elegans , Linhagem Celular , Humanos , Corpos de Inclusão/efeitos dos fármacos , Corpos de Inclusão/metabolismo
9.
Glia ; 68(3): 561-573, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31647138

RESUMO

We used mouse microglial cells in culture activated by lipopolysaccharide (LPS, 10 ng/ml) to study the anti-inflammatory potential of cannabidiol (CBD), the major nonpsychoactive component of cannabis. Under LPS stimulation, CBD (1-10 µM) potently inhibited the release of prototypical proinflammatory cytokines (TNF-α and IL-1ß) and that of glutamate, a noncytokine mediator of inflammation. The effects of CBD were predominantly receptor-independent and only marginally blunted by blockade of CB2 receptors. We established that CBD inhibited a mechanism involving, sequentially, NADPH oxidase-mediated ROS production and NF-κB-dependent signaling events. In line with these observations, active concentrations of CBD demonstrated an intrinsic free-radical scavenging capacity in the cell-free DPPH assay. Of interest, CBD also prevented the rise in glucose uptake observed in microglial cells challenged with LPS, as did the inhibitor of NADPH oxidase apocynin and the inhibitor of IκB kinase-2, TPCA-1. This indicated that the capacity of CBD to prevent glucose uptake also contributed to its anti-inflammatory activity. Supporting this view, the glycolytic inhibitor 2-deoxy-d-glucose (2-DG) mimicked the antioxidant/immunosuppressive effects of CBD. Interestingly, CBD and 2-DG, as well as apocynin and TPCA-1 caused a reduction in glucose-derived NADPH, a cofactor required for NADPH oxidase activation and ROS generation. These different observations suggest that CBD exerts its anti-inflammatory effects towards microglia through an intrinsic antioxidant effect, which is amplified through inhibition of glucose-dependent NADPH synthesis. These results also further confirm that CBD may have therapeutic utility in conditions where neuroinflammatory processes are prominent.


Assuntos
Canabidiol/farmacologia , Glucose/metabolismo , Inflamação/prevenção & controle , Microglia/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Citocinas/farmacologia , Proteínas I-kappa B/efeitos dos fármacos , Inflamação/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
J Neural Transm (Vienna) ; 127(1): 27-34, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31807953

RESUMO

Using midbrain cultures, we previously demonstrated that the noble gas xenon is robustly protective for dopamine (DA) neurons exposed to L-trans-pyrrolidine-2,4-dicarboxylate (PDC), an inhibitor of glutamate uptake used to generate sustained, low-level excitotoxic insults. DA cell rescue was observed in conditions where the control atmosphere for cell culture was substituted with a gas mix, comprising the same amount of oxygen (20%) and carbon dioxide (5%) but 75% of xenon instead of nitrogen. In the present study, we first aimed to determine whether DA cell rescue against PDC remains detectable when concentrations of xenon are progressively reduced in the cell culture atmosphere. Besides, we also sought to compare the effect of xenon to that of other noble gases, including helium, neon and krypton. Our results show that the protective effect of xenon for DA neurons was concentration-dependent with an IC50 estimated at about 44%. We also established that none of the other noble gases tested in this study protected DA neurons from PDC-mediated insults. Xenon's effectiveness was most probably due to its unique capacity to block NMDA glutamate receptors. Besides, mathematical modeling of gas diffusion in the culture medium revealed that the concentration reached by xenon at the cell layer level is the highest of all noble gases when neurodegeneration is underway. Altogether, our data suggest that xenon may be of potential therapeutic value in Parkinson disease, a chronic neurodegenerative condition where DA neurons appear vulnerable to slow excitotoxicity.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Hélio/farmacologia , Criptônio/farmacologia , Neônio/farmacologia , Fármacos Neuroprotetores/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Xenônio/farmacologia , Animais , Ácidos Carboxílicos/farmacologia , Células Cultivadas , Embrião de Mamíferos , Feminino , Memantina/farmacologia , Mesencéfalo , Fármacos Neuroprotetores/administração & dosagem , Piridinas/farmacologia , Ratos , Ratos Wistar , Xenônio/administração & dosagem
11.
J Phys Chem A ; 124(30): 6168-6176, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32551620

RESUMO

Switchable coupling between two qubits is important for quantum information science (QIS). As a proof of concept, a series of mesosubstituted porphyrins have been synthesized with a (2,2,6,6-tetramethylpiperidin-1-yl)oxyl stable free radical (SFR) appended and metalated with Cu(II), Ni(II), and Zn(II) in order to explore the interaction between the SFR doublet state and metalloporphyrin. The spin state of the porphyrin varies upon metal insertion, where Zn(II) is a diamagnetic metal, Cu(II) is paramagnetic, and Ni(II) can be switched from a diamagnetic square-planar structure to a paramagnetic octahedral state by complexation with a solvent (i.e., pyridine or tetrahydrofuran). Time-resolved electron paramagnetic resonance (EPR) measurements reveal that upon photoexcitation, the Zn(II) and free-base porphyrin species demonstrate different magnetic exchange regimes between the porphyrin triplet excited states and the SFR doublet state, with the Zn derivative populating a quartet state (i.e., moderate magnetic exchange), whereas the free-base derivative remains a triplet (i.e., weak magnetic exchange). Transient absorption measurements corroborate the TREPR results, demonstrating a 66% increase in the singlet excited-state decay rate due to enhanced intersystem crossing for the Zn(II) derivative in comparison to a modest 14% enhancement for the free-base porphyrin. These results enable the realization of a switchable qubit coupler, depending upon Zn metal insertion to the free-base porphyrin, which has potential QIS applications.

12.
Nature ; 508(7495): 233-6, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24695219

RESUMO

Space missions and thermal infrared observations have shown that small asteroids (kilometre-sized or smaller) are covered by a layer of centimetre-sized or smaller particles, which constitute the regolith. Regolith generation has traditionally been attributed to the fall back of impact ejecta and by the break-up of boulders by micrometeoroid impact. Laboratory experiments and impact models, however, show that crater ejecta velocities are typically greater than several tens of centimetres per second, which corresponds to the gravitational escape velocity of kilometre-sized asteroids. Therefore, impact debris cannot be the main source of regolith on small asteroids. Here we report that thermal fatigue, a mechanism of rock weathering and fragmentation with no subsequent ejection, is the dominant process governing regolith generation on small asteroids. We find that thermal fragmentation induced by the diurnal temperature variations breaks up rocks larger than a few centimetres more quickly than do micrometeoroid impacts. Because thermal fragmentation is independent of asteroid size, this process can also contribute to regolith production on larger asteroids. Production of fresh regolith originating in thermal fatigue fragmentation may be an important process for the rejuvenation of the surfaces of near-Earth asteroids, and may explain the observed lack of low-perihelion, carbonaceous, near-Earth asteroids.

13.
Mol Pharmacol ; 95(3): 269-285, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30567956

RESUMO

Quinone reductase 2 (QR2, E.C. 1.10.5.1) is an enzyme with a feature that has attracted attention for several decades: in standard conditions, instead of recognizing NAD(P)H as an electron donor, it recognizes putative metabolites of NADH, such as N-methyl- and N-ribosyl-dihydronicotinamide. QR2 has been particularly associated with reactive oxygen species and memory, strongly suggesting a link among QR2 (as a possible key element in pro-oxidation), autophagy, and neurodegeneration. In molecular and cellular pharmacology, understanding physiopathological associations can be difficult because of a lack of specific and powerful tools. Here, we present a thorough description of the potent, nanomolar inhibitor [2-(2-methoxy-5H-1,4b,9-triaza(indeno[2,1-a]inden-10-yl)ethyl]-2-furamide (S29434 or NMDPEF; IC50 = 5-16 nM) of QR2 at different organizational levels. We provide full detailed syntheses, describe its cocrystallization with and behavior at QR2 on a millisecond timeline, show that it penetrates cell membranes and inhibits QR2-mediated reactive oxygen species (ROS) production within the 100 nM range, and describe its actions in several in vivo models and lack of actions in various ROS-producing systems. The inhibitor is fairly stable in vivo, penetrates cells, specifically inhibits QR2, and shows activities that suggest a key role for this enzyme in different pathologic conditions, including neurodegenerative diseases.


Assuntos
Piridinas/farmacologia , Alcaloides de Pirrolizidina/farmacologia , Quinona Redutases/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Hep G2 , Humanos , Masculino , Camundongos , NAD(P)H Desidrogenase (Quinona)/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
14.
Eur Respir J ; 53(2)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30523161

RESUMO

Amyotrophic lateral sclerosis (ALS) patients show progressive respiratory muscle weakness leading to death from respiratory failure. However, there are no data on diaphragm histological changes in ALS patients and how they correlate with routine respiratory measurements.We collected 39 diaphragm biopsies concomitantly with laparoscopic insertion of intradiaphragmatic electrodes during a randomised controlled trial evaluating early diaphragm pacing in ALS (https://clinicaltrials.gov; NCT01583088). Myofibre type, size and distribution were evaluated by immunofluorescence microscopy and correlated with spirometry, respiratory muscle strength and phrenic nerve conduction parameters. The relationship between these variables and diaphragm atrophy was assessed using multivariate regression models.All patients exhibited significant slow- and fast-twitch diaphragmatic atrophy. Vital capacity (VC), maximal inspiratory pressure, sniff nasal inspiratory pressure (SNIP) and twitch transdiaphragmatic pressure did not correlate with the severity of diaphragm atrophy. Inspiratory capacity (IC) correlated modestly with slow-twitch myofibre atrophy. Supine fall in VC correlated weakly with fast-twitch myofibre atrophy. Multivariate analysis showed that IC, SNIP and functional residual capacity were independent predictors of slow-twitch diaphragmatic atrophy, but not fast-twitch atrophy.Routine respiratory tests are poor predictors of diaphragm structural changes. Improved detection of diaphragm atrophy is essential for clinical practice and for management of trials specifically targeting diaphragm muscle function.


Assuntos
Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/fisiopatologia , Atrofia/diagnóstico , Atrofia/fisiopatologia , Diafragma/fisiopatologia , Respiração , Tecido Adiposo/patologia , Biópsia , Eletrodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Debilidade Muscular/fisiopatologia , Análise de Regressão , Testes de Função Respiratória , Insuficiência Respiratória/fisiopatologia , Músculos Respiratórios/fisiopatologia , Ultrassonografia , Capacidade Vital
15.
J Stroke Cerebrovasc Dis ; 28(2): 288-294, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30391330

RESUMO

BACKGROUND: Previous studies have described ischemic stroke temporally related to specific triggers, but only 1 series collected patients with acute ischemic stroke (AIS) following downhill skiing and all caused by cervical artery dissections. Here we describe our series of AIS temporally associated to ski practice, focusing on the frequency, pathogenesis, clinical presentation, and prognosis. METHODS: We maintained a prospective list of Skiing Associated Strokes (SASs) from 2003 to 2017. From all AIS patients included in our stroke registry Acute Stroke Registry and Analysis of Lausanne (ASTRAL) over the same period, we identified a comparison group of non-SAS patients, matched for age and gender. RESULTS: In the 12-year observation period, we identified 17 SASs (4 females, median age 51 years) and 51 matched control patients with nonski-associated strokes. Vascular risk factors, stroke features, and outcome were similar between the 2 groups. Stroke mechanism was arterial dissection in 11 of 17 SASs (65%) and in 7 of 51 control patients (14%, chi-square test: P < .05). In the other 6 cases of ski-associated stroke, etiology was cardiac embolism from atrial fibrillation in 2 patients, large vessel atherosclerosis with stenosis >50% in 1 patient, and undetermined in 3. Among the 11 patients with SAS caused by dissection, 8 reported minor falls while skiing, 1 had a major head trauma without loss of consciousness, and 2 had no traumatism (compared to preceding trauma in 29 of 147 [20%] of all other AIS caused by arterial dissection in ASTRAL, P < .01). CONCLUSIONS: Arterial dissection was a significantly more frequent stroke mechanism in SAS compared to matched controls, but other mechanisms occurred as well. Minor or moderate skiing-related trauma preceded most SAS with dissections.


Assuntos
Ataque Isquêmico Transitório/epidemiologia , Ataque Isquêmico Transitório/terapia , Esqui/lesões , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/terapia , Acidentes por Quedas , Dissecção Aórtica/epidemiologia , Dissecção Aórtica/terapia , Fibrilação Atrial/epidemiologia , Fibrilação Atrial/terapia , Estudos de Casos e Controles , Feminino , Humanos , Embolia Intracraniana/epidemiologia , Embolia Intracraniana/terapia , Ataque Isquêmico Transitório/diagnóstico , Masculino , Pessoa de Meia-Idade , Prevalência , Sistema de Registros , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Acidente Vascular Cerebral/diagnóstico , Suíça/epidemiologia , Fatores de Tempo , Resultado do Tratamento , Lesões do Sistema Vascular/epidemiologia , Lesões do Sistema Vascular/terapia
16.
Glia ; 66(11): 2353-2365, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30394585

RESUMO

When activated, microglial cells have the potential not only to secrete typical proinflammatory mediators but also to release the neurotransmitter glutamate in amounts that may promote excitotoxicity. Here, we wished to determine the potential of the Parkinson's disease (PD) protein α-Synuclein (αS) to stimulate glutamate release using cultures of purified microglial cells. We established that glutamate release was robustly increased when microglial cultures were treated with fibrillary aggregates of αS but not with the native monomeric protein. Promotion of microglial glutamate release by αS aggregates (αSa) required concomitant engagement of TLR2 and P2X7 receptors. Downstream to cell surface receptors, the release process was mediated by activation of a signaling cascade sequentially involving phosphoinositide 3-kinase (PI3K) and NADPH oxidase, a superoxide-producing enzyme. Inhibition of the Xc- antiporter, a plasma membrane exchange system that imports extracellular l-cystine and exports intracellular glutamate, prevented the release of glutamate induced by αSa, indicating that system Xc- was the final effector element in the release process downstream to NADPH oxidase activation. Of interest, the stimulation of glutamate release by αSa was abrogated by dopamine through an antioxidant effect requiring D1 dopamine receptor activation and PI3K inhibition. Altogether, present data suggest that the activation of microglial cells by αSa may possibly result in a toxic build-up of extracellular glutamate contributing to excitotoxic stress in PD. The deficit in dopamine that characterizes this disorder may further aggravate this process in a vicious circle mechanism.


Assuntos
Dopamina/farmacologia , Ácido Glutâmico/metabolismo , Microglia/efeitos dos fármacos , Agregados Proteicos/efeitos dos fármacos , alfa-Sinucleína/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Animais Recém-Nascidos , Anticorpos Monoclonais/farmacologia , Isótopos de Carbono/farmacocinética , Células Cultivadas , Cistina/farmacocinética , Humanos , Lipopeptídeos/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/ultraestrutura , Inibidores da Agregação Plaquetária/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 2 Toll-Like/imunologia , alfa-Sinucleína/farmacologia
17.
Glia ; 66(8): 1736-1751, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29665074

RESUMO

Neuroinflammation and mitochondrial dysfunction, key mechanisms in the pathogenesis of Parkinson's disease (PD), are usually explored independently. Loss-of-function mutations of PARK2 and PARK6, encoding the E3 ubiquitin protein ligase Parkin and the mitochondrial serine/threonine kinase PINK1, account for a large proportion of cases of autosomal recessive early-onset PD. PINK1 and Parkin regulate mitochondrial quality control and have been linked to the modulation of innate immunity pathways. We report here an exacerbation of NLRP3 inflammasome activation by specific inducers in microglia and bone marrow-derived macrophages from Park2-/- and Pink1-/- mice. The caspase 1-dependent release of IL-1ß and IL-18 was, therefore, enhanced in Park2-/- and Pink1-/- cells. This defect was confirmed in blood-derived macrophages from patients with PARK2 mutations and was reversed by MCC950, which specifically inhibits NLRP3 inflammasome complex formation. Enhanced NLRP3 signaling in Parkin-deficient cells was accompanied by a lack of induction of A20, a well-known negative regulator of the NF-κB pathway recently shown to attenuate NLRP3 inflammasome activity. We also found an inverse correlation between A20 abundance and IL-1ß release, in human macrophages challenged with NLRP3 inflammasome inducers. Overall, our observations suggest that the A20/NLRP3-inflammasome axis participates in the pathogenesis of PARK2-linked PD, paving the way for the exploration of its potential as a biomarker and treatment target.


Assuntos
Retroalimentação Fisiológica/fisiologia , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ubiquitina-Proteína Ligases/deficiência , Adulto , Humanos , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Microglia/metabolismo , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , NF-kappa B/metabolismo
18.
Hum Mol Genet ; 25(14): 2972-2984, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27206984

RESUMO

Mutations in PARK2, encoding the E3 ubiquitin protein ligase Parkin, are a common cause of autosomal recessive Parkinson's disease (PD). Loss of PARK2 function compromises mitochondrial quality by affecting mitochondrial biogenesis, bioenergetics, dynamics, transport and turnover. We investigated the impact of PARK2 dysfunction on the endoplasmic reticulum (ER)-mitochondria interface, which mediates calcium (Ca2+) exchange between the two compartments and is essential for Parkin-dependent mitophagy. Confocal and electron microscopy analyses showed the ER and mitochondria to be in closer proximity in primary fibroblasts from PARK2 knockout (KO) mice and PD patients with PARK2 mutations than in controls. Ca2+ flux to the cytosol was also modified, due to enhanced ER-to-mitochondria Ca2+ transfers, a change that was also observed in neurons derived from induced pluripotent stem cells of a patient with PARK2 mutations. Subcellular fractionation showed the abundance of the Parkin substrate mitofusin 2 (Mfn2), which is known to modulate the ER-mitochondria interface, to be specifically higher in the mitochondrion-associated ER membrane compartment in PARK2 KO tissue. Mfn2 downregulation or the exogenous expression of normal Parkin restored cytosolic Ca2+ transients in fibroblasts from patients with PARK2 mutations. In contrast, a catalytically inactive PD-related Parkin variant had no effect. Overall, our data suggest that Parkin is directly involved in regulating ER-mitochondria contacts and provide new insight into the role of the loss of Parkin function in PD development.


Assuntos
Retículo Endoplasmático/metabolismo , GTP Fosfo-Hidrolases/genética , Mitocôndrias/metabolismo , Doença de Parkinson/genética , Ubiquitina-Proteína Ligases/genética , Animais , Sinalização do Cálcio/genética , Citosol/metabolismo , Retículo Endoplasmático/patologia , Fibroblastos , GTP Fosfo-Hidrolases/biossíntese , Regulação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/patologia , Mitofagia/genética , Mutação , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia
19.
Proc Natl Acad Sci U S A ; 112(3): E321-8, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25561543

RESUMO

High-density accumulation of voltage-gated sodium (Nav) channels at nodes of Ranvier ensures rapid saltatory conduction along myelinated axons. To gain insight into mechanisms of node assembly in the CNS, we focused on early steps of nodal protein clustering. We show in hippocampal cultures that prenodes (i.e., clusters of Nav channels colocalizing with the scaffold protein ankyrinG and nodal cell adhesion molecules) are detected before myelin deposition along axons. These clusters can be induced on purified neurons by addition of oligodendroglial-secreted factor(s), whereas ankyrinG silencing prevents their formation. The Nav isoforms Nav1.1, Nav1.2, and Nav1.6 are detected at prenodes, with Nav1.6 progressively replacing Nav1.2 over time in hippocampal neurons cultured with oligodendrocytes and astrocytes. However, the oligodendrocyte-secreted factor(s) can induce the clustering of Nav1.1 and Nav1.2 but not of Nav1.6 on purified neurons. We observed that prenodes are restricted to GABAergic neurons, whereas clustering of nodal proteins only occurs concomitantly with myelin ensheathment on pyramidal neurons, implying separate mechanisms of assembly among different neuronal subpopulations. To address the functional significance of these early clusters, we used single-axon electrophysiological recordings in vitro and showed that prenode formation is sufficient to accelerate the speed of axonal conduction before myelination. Finally, we provide evidence that prenodal clusters are also detected in vivo before myelination, further strengthening their physiological relevance.


Assuntos
Bainha de Mielina/metabolismo , Animais , Hipocampo/metabolismo , Camundongos , Ratos
20.
J Neurochem ; 142(1): 14-28, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28398653

RESUMO

Despite its low chemical reactivity, the noble gas xenon possesses a remarkable spectrum of biological effects. In particular, xenon is a strong neuroprotectant in preclinical models of hypoxic-ischemic brain injury. In this study, we wished to determine whether xenon retained its neuroprotective potential in experimental settings that model the progressive loss of midbrain dopamine (DA) neurons in Parkinson's disease. Using rat midbrain cultures, we established that xenon was partially protective for DA neurons through either direct or indirect effects on these neurons. So, when DA neurons were exposed to l-trans-pyrrolidine-2,4-dicarboxylic acid so as to increase ambient glutamate levels and generate slow and sustained excitotoxicity, the effect of xenon on DA neurons was direct. The vitamin E analog Trolox also partially rescued DA neurons in this setting and enhanced neuroprotection by xenon. However, in the situation where DA cell death was spontaneous, the protection of DA neurons by xenon appeared indirect as it occurred through the repression of a mechanism mediated by proliferating glial cells, presumably astrocytes and their precursor cells. Xenon also exerted trophic effects for DA neurons in this paradigm. The effects of xenon were mimicked and improved by the N-methyl-d-aspartate glutamate receptor antagonist memantine and xenon itself appeared to work by antagonizing N-methyl-d-aspartate receptors. Note that another noble gas argon could not reproduce xenon effects. Overall, present data indicate that xenon can provide protection and trophic support to DA neurons that are vulnerable in Parkinson's disease. This suggests that xenon might have some therapeutic value for this disorder.


Assuntos
Anestésicos Inalatórios/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Mesencéfalo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Xenônio/farmacologia , Animais , Antioxidantes/farmacologia , Morte Celular/efeitos dos fármacos , Células Cultivadas , Cromanos/farmacologia , Ácidos Dicarboxílicos/antagonistas & inibidores , Ácidos Dicarboxílicos/toxicidade , Antagonistas de Aminoácidos Excitatórios/farmacologia , Memantina/farmacologia , Técnicas de Cultura de Órgãos , Pirrolidinas/antagonistas & inibidores , Pirrolidinas/toxicidade , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA