Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 95(2): 1074-1084, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36534635

RESUMO

Massive demand for Li-ion batteries stimulates the research of new materials such as high-capacity cathodes, metal anodes, and solid electrolytes, which should ultimately lead to new generations of batteries such as all-solid-state batteries. Such material discovery often requires knowledge on lithium's content and local distribution in complex Li-containing systems, which is a challenging analytical task. The state-of-the-art time-of-flight secondary-ion mass spectrometry (TOF-SIMS) is one of the few chemical analysis techniques allowing for parallel detection of all sample components and representing their distributions in 3D with nanoscale resolution. In this work, we explore the outstanding potential of TOF-SIMS for comprehensive chemical and nano-/micro-structural characterization of novel Li-rich nickel manganese cobalt oxide thin films, which are potential cathode materials for the future generation batteries. Off-stoichiometric thin films of Li- and Ni-rich layered oxide with the composition of LixNi0.8Mn0.1Co0.1O2 (LR-NMC811, x > 1) were deposited using reactive magnetron sputtering. Such thin films do not contain any conductive additives or binders and therefore serve as model 2D systems to investigate compositional fluctuations, surface and interface phenomena, and their aging. TOF-SIMS revealed the presence of 400 ± 100 nm overlithiated grains and 100 ± 30 nm nanoparticles with an increased 7Li16O+ ion content in the buried part of LR-NMC811. The Li-rich agglomerates could potentially serve as Li reservoirs for compensating Li losses during cathode fabrication and cell operation. Interestingly, these sub-micron structures decomposed in time upon exposure to ambient conditions for 30 days.

2.
Small ; 19(3): e2202470, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36449596

RESUMO

The increasing demand for functional materials and an efficient use of sustainable resources makes the search for new material systems an ever growing endeavor. With this respect, architected (meta-)materials attract considerable interest. Their fabrication at the micro- and nanoscale, however, remains a challenge, especially for composites with highly different phases and unmodified reinforcement fillers. This study demonstrates that it is possible to create a non-cytotoxic nanocomposite ink reinforced by a sustainable phase, cellulose nanocrystals (CNCs), to print and tune complex 3D architectures using two-photon polymerization, thus, advancing the state of knowledge toward the microscale. Micro-compression, high-res scanning electron microscopy, (polarised) Raman spectroscopy, and composite modeling are used to study the structure-property relationships. A 100% stiffness increase is observed already at 4.5 wt% CNC while reaching a high photo-polymerization degree of ≈80% for both neat polymers and CNC-composites. Polarized Raman and the Halpin-Tsai composite-model suggest a random CNC orientation within the polymer matrix. The microscale approach can be used to tune arbitrary small scale CNC-reinforced polymer-composites with comparable feature sizes. The new insights pave the way for future applications where the 3D printing of small structures is essential to improve performances of tissue-scaffolds, extend bio-electronics applications or tailor microscale energy-absorption devices.


Assuntos
Nanocompostos , Nanopartículas , Polímeros/química , Celulose/química , Nanopartículas/química , Nanocompostos/química , Impressão Tridimensional
3.
Small ; 18(44): e2204178, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36135726

RESUMO

Si1-x Gex is a key material in modern complementary metal-oxide-semiconductor and bipolar devices. However, despite considerable efforts in metal-silicide and -germanide compound material systems, reliability concerns have so far hindered the implementation of metal-Si1-x Gex junctions that are vital for diverse emerging "More than Moore" and quantum computing paradigms. In this respect, the systematic structural and electronic properties of Al-Si1-x Gex heterostructures, obtained from a thermally induced exchange between ultra-thin Si1-x Gex nanosheets and Al layers are reported. Remarkably, no intermetallic phases are found after the exchange process. Instead, abrupt, flat, and void-free junctions of high structural quality can be obtained. Interestingly, ultra-thin interfacial Si layers are formed between the metal and Si1-x Gex segments, explaining the morphologic stability. Integrated into omega-gated Schottky barrier transistors with the channel length being defined by the selective transformation of Si1-x Gex into single-elementary Al leads, a detailed analysis of the transport is conducted. In this respect, a report on a highly versatile platform with Si1-x Gex composition-dependent properties ranging from highly transparent contacts to distinct Schottky barriers is provided. Most notably, the presented abrupt, robust, and reliable metal-Si1-x Gex junctions can open up new device implementations for different types of emerging nanoelectronic, optoelectronic, and quantum devices.

4.
J Am Chem Soc ; 143(49): 20717-20724, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34854678

RESUMO

Metal-organic framework (MOF) glasses provide new perspectives on many material properties due to their unique chemical and structural nature. Their mechanical properties are of particular interest because glasses are inherently brittle, which limits their applications as structural materials. Here we perform strain-rate-dependent uniaxial micropillar compression experiments on agZIF-62, agZIF-UC-5, and agTIF-4, a series of MOF glasses with different substituting linker molecules, and find that these glasses show substantial plasticity, at least on the micrometer scale. At a quasi-static strain rate of 0.001 s-1, the micropillars yielded at approximately 0.32 GPa and subsequently deformed plastically up to 35% strain, irrespective of the type of substituting linker. With increasing strain rate, the yield strength of agZIF-62 evolved with the strain-rate sensitivity m = 0.024 to reach a yield strength of 0.44 GPa at a strain rate of 510 s-1. On the basis of this relatively low strain-rate sensitivity and the absence of serrated flow, we conclude that structural densification is the predominant mechanism that accommodates such extensive plasticity.

5.
Anal Chem ; 93(29): 10261-10271, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34256561

RESUMO

Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is one of very few analytical techniques allowing sample chemical structure to be characterized in three-dimensional (3D) with nanometer resolution. Due to the excellent sensitivity in the order of ppm-ppb and capability of detecting all ionized elements and molecules, TOF-SIMS finds many applications for analyzing nanoparticle-containing systems and thin films used in microdevices for new energy applications, microelectronics, and biomedicine. However, one of the main drawbacks of this technique is potential mass interference between ions having the same or similar masses, which can lead to data misinterpretation. In this work, we present that this problem can be easily solved by delivering fluorine gas to a sample surface during TOF-SIMS analysis and we propose mechanisms driving this phenomenon. Our comprehensive studies, conducted on complex thin films made of highly mass-interfering elements, show that fluorine modifies the ionization process, leading to element-specific changes of ion yields (which can vary by several orders of magnitude), and affects the efficiency of metal hydride and oxide formation. In conjunction, these two effects can efficiently induce separation of mass interference, providing more representative TOF-SIMS data with respect to the sample composition and significant enhancement of chemical image resolution. Consequently, this can improve the chemical characterization of complex multilayers in nanoscale.


Assuntos
Flúor , Espectrometria de Massa de Íon Secundário , Íons , Metais
6.
Microsc Microanal ; 27(1): 65-73, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33222706

RESUMO

Atomic force microscopy (AFM) is a well-known tool for studying surface roughness and to collect depth information about features on the top atomic layers of samples. By combining secondary ion mass spectroscopy (SIMS) with focused ion beam (FIB) milling in a scanning electron microscope (SEM), chemical information of sputtered structures can be visualized and located with high lateral and depth resolution. In this paper, a high vacuum (HV) compatible AFM was installed in a TESCAN FIB-SEM instrument that was equipped with a time-of-flight SIMS (ToF-SIMS) detector. To calibrate the sputtering rate and measure the induced roughness caused by the ToF-SIMS analysis, subsequent AFM measurements were performed on an inorganic multilayer vertical cavity surface-emitting laser sample. Normalized sputtering rates were used to aid the accurate three-dimensional reconstruction of the sputtered volume's chemical composition. Achievable resolution, surface roughness during sputtering, and surface oxidation issues were analyzed. The integration of complementary detectors opens up the ability to determine the sample properties as well as to understand the influence of the Ga+ ion sputtering method on the sample surface during the analysis.

7.
Anal Chem ; 92(2): 2121-2129, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31858788

RESUMO

Time-of-flight secondary ion mass spectrometry (TOF-SIMS) detectors have been intensively developed in recent decades due to their unprecedented capability of representing a sample elemental composition in a three-dimensional space from nano- to submilliscale with high spatial resolution and mass resolution. A compact high-vacuum-compatible version of these detectors can be integrated into a focused ion beam (FIB) system which, assembled with scanning electron microscopy (SEM), is the most popular tool used in nanotechnology and material science. This gives a new opportunity for combining TOF-SIMS analysis with other instruments within the same analytical chamber. In this work we present the results of conducting elemental characterization of a dedicated model multilayer sample composed of 100 nm thick thin films of Cu, Zr, and ZrCuAg alloy in a fluorine gas atmosphere provided by an in situ gas injection system (GIS). In general, the secondary ion signals were significantly enhanced by up to 3 orders of magnitude, leading to much higher spatial resolution. The quality of elemental images and depth profiles was improved during a single measurement (which usually cannot be obtained at standard vacuum conditions) at a high beam energy of 20 keV. Moreover, fluorine assistance has enabled a mass interference between 107Ag+ and 91Zr16O+ ions to be separated. This remarkable finding has never been reported before and is expected to play an important role in the future evolution of TOF-SIMS analytical protocols, as currently the mass interference between ions remains one of the main drawbacks of the technique.

8.
Anal Chem ; 92(18): 12518-12527, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32808520

RESUMO

In this work, we present a comprehensive comparison of time-of-flight secondary ion mass spectrometry (TOF-SIMS) and scanning transmission electron microscopy combined with energy-dispersive X-ray spectroscopy (STEM/EDX), which are currently the most powerful elemental characterization techniques in the nano- and microscale. The potential and limitations of these methods are verified using a novel dedicated model sample consisting of Al nanoparticles buried under a 50 nm thick Cu thin film. The sample design based on the low concentration of nanoparticles allowed us to demonstrate the capability of TOF-SIMS to spatially resolve individual tens of nanometer large nanoparticles under ultrahigh vacuum (UHV) as well as high vacuum (HV) conditions. This is a remarkable achievement especially taking into account the very small quantities of the investigated Al content. Moreover, the imposed restriction on the Al nanoparticle location, i.e., only on the sample substrate, enabled us to prove that the measured Al signal represents the real distribution of Al nanoparticles and does not originate from the artifacts induced by the surface topology. The provided comparison of TOF-SIMS and STEM/EDX characteristics delivers guidelines for choosing the most optimal method for efficient characterization of nano-objects.

9.
Nano Lett ; 19(4): 2350-2359, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30811940

RESUMO

Glass has been recently envisioned as a stronger and more robust alternative to silicon in microelectromechanical system applications, including high-frequency resonators and switches. Identifying the dynamic mechanical properties of microscale glass is thus vital for understanding their ability to withstand shocks and vibrations in such demanding applications. However, despite nearly half a century of research, the micromechanical properties of glass and amorphous materials in general are primarily limited to quasi-static strain rates below ∼0.1/s. Here, we report the in situ high-strain-rate experiments of fused silica micropillars inside a scanning electron microscope at strain rates up to 1335/s. A remarkable ductile-brittle-ductile failure mode transition was observed at increasing strain rates from 0.0008 to 1335/s as the deformation flow transitions between homogeneous-serrated-homogeneous regimes. Detailed surface topography investigation of the tested micropillars revealed that at the intermediate strain rate (<∼6/s) serrated flow regime, the load drops are caused by the sequential propagation of individual shear bands. Further, analytical calculations and finite element simulations suggest that the atomistic mechanism responsible for the homogeneous stress-strain curves at very high strain rates (>∼64/s) can be attributed to the simultaneous nucleation of multiple shear bands along with dissipative deformation heating. This unique rate-dependent deformation behavior of the glass micropillars highlights the importance and need of extending such microscale high-strain-rate studies to other amorphous materials such as metallic glasses and amorphous metals and alloys. Such investigations can provide critical insights about the damage tolerance and crashworthiness of these materials for real-life applications.

10.
Anal Chem ; 91(18): 11712-11722, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31429265

RESUMO

Combining a Gas-Injection System (GIS) with the Focused Ion Beam (FIB) has a broad scope of applications in sample preparation such as protective layer deposition, increasing material sputtering rates, and reducing FIB-related artifacts. On the other hand, injecting certain specific gases during a Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) analysis can significantly increase element ionization probability and, therefore, improve the quality of 3D representation of a sample elemental structure. In this work, for the first time, the potential of GIS for enhancing secondary ion signals acquired using a TOF detector incorporated into a commercial Ga+ FIB-SEM (Focused Ion Beam combined with Scanning Electron Microscope) instrument is presented. The depth profiles of pure metals (thin films of Cu, Zr, Ag, and W with the thickness in the order of 100 nm) were acquired under ambient vacuum conditions as well as under an exposure to water and fluorine gases. The influence of supplementary gases on the ion yields and sputtering rates was studied. Simulations were performed to assess the local gas pressure at the location of FIB-TOF-SIMS analysis. The highest enhancement of ionization probability was achieved in the case of the Cu thin film (10 times during water vapor coinjection and 510 times when using a fluorine gas). Regarding the sputtering rates, the response of Zr to the effect of the gases was the strongest. Compared to standard background pressure measurements, this thin film was milled around 6 times faster under exposure to water vapor and over 2 times faster when fluorine gas was supplied.

11.
Anal Chem ; 91(18): 11834-11839, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31429257

RESUMO

Imaging nano-objects in complex systems such as nanocomposites using time-of-flight secondary ion mass spectrometry (TOF-SIMS) is a challenging task. Due to a very small amount of the material and a matrix effect, the number of generated secondary ions can be insufficient to represent a 3D elemental distribution despite being detected in a mass spectrum. Therefore, a model sample consisting of a ZrCuAg matrix with embedded Al nanoparticles is designed. A high mass difference between the light Al and heavy matrix components limits mass interference. The chemical structure measurements using a pulsed 60 keV Bi32+ beam or a continuous 30 keV Ga+ beam reveals distinct Al signal segregation. This can indicate a spatially resolved detection of single 10s of nanometer large particles and/or their agglomerates for the first time. However, TOF-SIMS images of 50 nm or smaller objects do not necessarily represent their exact size and shape but can rather be their convolutions with the primary ion beam shape. Therefore, the size of nanoparticles (25-64 nm) was measured using scanning transmission electron microscopy. Our studies prove the capability of TOF-SIMS to image chemical structure of nanohybrids which is expected to help building new functional materials and optimize their properties.

12.
Small ; 15(22): e1805312, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30951252

RESUMO

The impressive mechanical properties of natural composites, such as nacre, arise from their multiscale hierarchical structures, which span from nano- to macroscale and lead to effective energy dissipation. While some synthetic bioinspired materials have achieved the toughness of natural nacre, current production methods are complex and typically involve toxic chemicals, extreme temperatures, and/or high pressures. Here, the exclusive use of bacteria to produce nacre-inspired layered calcium carbonate-polyglutamate composite materials that reach and exceed the toughness of natural nacre, while additionally exhibiting high extensibility and maintaining high stiffness, is introduced. The extensive diversity of bacterial metabolic abilities and the possibility of genetic engineering allows for the creation of a library of bacterially produced, cost-effective, and eco-friendly composite materials.


Assuntos
Materiais Biomiméticos/química , Nanocompostos/química , Carbonato de Cálcio/química , Microscopia Eletrônica de Varredura , Ácido Poliglutâmico/química
13.
Small ; 13(8)2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27966819

RESUMO

By designing advantageous cellular geometries and combining the material size effects at the nanometer scale, lightweight hybrid microarchitectured materials with tailored structural properties are achieved. Prior studies reported the mechanical properties of high strength cellular ceramic composites, obtained by atomic layer deposition. However, few studies have examined the properties of similar structures with metal coatings. To determine the mechanical performance of polymer cellular structures reinforced with a metal coating, 3D laser lithography and electroless deposition of an amorphous layer of nickel-boron (NiB) is used for the first time to produce metal/polymer hybrid structures. In this work, the mechanical response of microarchitectured structures is investigated with an emphasis on the effects of the architecture and the amorphous NiB thickness on their deformation mechanisms and energy absorption capability. Microcompression experiments show an enhancement of the mechanical properties with the NiB thickness, suggesting that the deformation mechanism and the buckling behavior are controlled by the brittle-to-ductile transition in the NiB layer. In addition, the energy absorption properties demonstrate the possibility of tuning the energy absorption efficiency with adequate designs. These findings suggest that microarchitectured metal/polymer hybrid structures are effective in producing materials with unique property combinations.

14.
Langmuir ; 33(43): 12404-12418, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-28927272

RESUMO

Titanium dioxide (TiO2) nanoparticles were synthesized by nonaqueous sol-gel route using titanium tetrachloride and benzyl alcohol as the solvent. The obtained 4 nm-sized anatase nanocrystals were readily dispersible in various polar solvents allowing for simple preparation of colloidal dispersions in water, isopropyl alcohol, dimethyl sulfoxide, and ethanol. Results showed that dispersed nanoparticles have acidic properties and exhibit positive zeta-potential which is suitable for their deposition by cathodic electrophoresis. Aluminum substrates were anodized in phosphoric acid in order to produce porous anodic oxide layers with pores ranging from 160 to 320 nm. The resulting nanopores were then filled with TiO2 nanoparticles by electrophoretic deposition. The influence of the solvent, the electric field, and the morphological characteristics of the alumina layer (i.e., barrier layer and porosity) were studied.

15.
Nano Lett ; 16(1): 812-6, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26683095

RESUMO

Diamond ⟨100⟩- and ⟨111⟩-oriented nanopillars were fabricated by focused ion beam (FIB) milling from synthetic single crystals and compressed using a larger diameter diamond punch. Uniaxial compressive failure was observed via fracture with a plateau in maximum stress of ∼0.25 TPa, the highest uniaxial strength yet measured. This corresponded to maximum shear stresses that converged toward 75 GPa or ∼ G/7 at small sizes, which are very close to the ultimate theoretical yield stress estimate of G/2π.

16.
Nano Lett ; 16(12): 7597-7603, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27805410

RESUMO

The micromechanical fracture behavior of Si [100] was investigated as a function of temperature in the scanning electron microscope with a nanoindenter. A gradual increase in KC was observed with temperature, in contrast to sharp transitions reported earlier for macro-Si. A transition in cracking mechanism via crack branching occurs at ∼300 °C accompanied by multiple load drops. This reveals that onset of small-scale plasticity plays an important role in the brittle-to-ductile transition of miniaturized Si.

17.
Nat Mater ; 13(7): 740-7, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24907926

RESUMO

Ageing societies suffer from an increasing incidence of bone fractures. Bone strength depends on the amount of mineral measured by clinical densitometry, but also on the micromechanical properties of the hierarchical organization of bone. Here, we investigate the mechanical response under monotonic and cyclic compression of both single osteonal lamellae and macroscopic samples containing numerous osteons. Micropillar compression tests in a scanning electron microscope, microindentation and macroscopic compression tests were performed on dry ovine bone to identify the elastic modulus, yield stress, plastic deformation, damage accumulation and failure mechanisms. We found that isolated lamellae exhibit a plastic behaviour, with higher yield stress and ductility but no damage. In agreement with a proposed rheological model, these experiments illustrate a transition from a ductile mechanical behaviour of bone at the microscale to a quasi-brittle response driven by the growth of cracks along interfaces or in the vicinity of pores at the macroscale.


Assuntos
Osso e Ossos/fisiologia , Força Compressiva , Animais , Fenômenos Biomecânicos , Osso e Ossos/ultraestrutura , Microscopia Eletrônica de Varredura , Ovinos/anatomia & histologia , Ovinos/fisiologia , Estresse Mecânico
19.
Anal Bioanal Chem ; 406(29): 7533-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24997536

RESUMO

Combinatorial chemistry and high-throughput techniques are an efficient way of exploring optimal values of elemental composition. Optimal composition can result in high performance in a sequence of material synthesis and characterization. Materials combinatorial libraries are typically encountered in the form of a thin film composition gradient which is produced by simultaneous material deposition on a substrate from two or more sources that are spatially separated and chemically different. Fast spatially resolved techniques are needed to characterize structure, composition, and relevant properties of these combinatorial screening samples. In this work, the capability of a glow discharge optical emission spectroscopy (GD-OES) elemental mapping system is extended to nitrogen-based combinatorial libraries with nonconductive components through the use of pulsed radiofrequency power. The effects of operating parameters of the glow discharge and detection system on the achievable spatial resolution were investigated as it is the first time that an rf source is coupled to a setup featuring a push-broom hyperspectral imaging system and a restrictive anode tube GD source. Spatial-resolution optimized conditions were then used to characterize an aluminum nitride/chromium nitride thin-film composition spread. Qualitative elemental maps could be obtained within 16.8 s, orders of magnitude faster than typical techniques. The use of certified reference materials allowed quantitative elemental analysis maps to be extracted from the emission intensity images. Moreover, the quantitative procedure allowed correcting for the inherent emission intensity inhomogeneity in GD-OES. The results are compared to quantitative depth profiles obtained with a commercial GD-OES instrument.

20.
Phys Chem Chem Phys ; 16(47): 26375-84, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25367332

RESUMO

The FeCrNi alloy, whose composition is close to that of stainless steel 304, was prepared by electrodeposition and characterized. Nanocrystalline FeCrNi (nc-FeCrNi) was obtained by employing a double-compartment cell where the anode is separated from the cathode compartment, while amorphous FeCrNi (a-FeCrNi) was deposited in a conventional single electrochemical cell. The carbon content of nc-FeCrNi was found to be significantly lower than that of a-FeCrNi, suggesting that carbon inclusion is responsible for the change in the microstructure. The major source of carbon is associated with the reaction compounds at the anode electrode, presumably decomposed glycine. Crystal structure analysis by XRD and TEM revealed that the as-deposited nc-FeCrNi deposits consist of α-Fe which transforms to γ-Fe upon thermal annealing. Nanoindentation tests showed that nc-FeCrNi exhibits higher hardness than a-FeCrNi, which is consistent with the inverse Hall-Petch behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA