Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Curr Issues Mol Biol ; 46(8): 7846-7861, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39194682

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is a poorly understood and fatal disease. It has a low prevalence and a 2-4 year survival period. Various theories and hypotheses relating to its development process have been proposed, albeit with no breakthrough in its treatment. Recently, the role of the adaptive immune system in ALS, particularly CD4+ T cells, has begun to be investigated. CD4+ T cells are a heterogeneous group of immune cells. They include highly pro-inflammatory types such as Th1 and Th17, as well as highly anti-inflammatory cells such as Tregs. However, the landscape of the role of CD4+ T cells in ALS is still not clearly understood. This review covers current hypotheses that elucidate how various CD4+ T cells can contribute to ALS development. These hypotheses include the SWITCH model, which suggests that, in the early stages of the disease, Tregs are highly capable of regulating the immune response. However, in the later stages of the disease, it seems that pro-inflammatory cells such as Th1 and Th17 are capable of overwhelming Treg function. The reason why this occurs is not known. Several research groups have proposed that CD4+ T cells as a whole might experience aging. Others have proposed that gamma delta T cells might directly target Tregs. Additionally, other research groups have argued that less well-known CD4+ T cells, such as Emoes+ CD4+ T cells, may be directly responsible for neuron death by producing granzyme B. We propose that the ALS landscape is highly complicated and that there is more than one feasible hypothesis. However, it is critical to take into consideration the differences in the ability of different populations of CD4+ T cells to infiltrate the blood-brain barrier, taking into account the brain region and the time of infiltration. Shedding more light on these still obscure factors can help to create a personalized therapy capable of regaining the balance of power in the battle between the anti-inflammatory and pro-inflammatory cells in the central nervous system of ALS patients.

2.
Curr Issues Mol Biol ; 46(8): 8301-8319, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39194707

RESUMO

The accurate identification of the primary tumor origin in metastatic cancer cases is crucial for guiding treatment decisions and improving patient outcomes. Copy number alterations (CNAs) and copy number variation (CNV) have emerged as valuable genomic markers for predicting the origin of metastases. However, current models that predict cancer type based on CNV or CNA suffer from low AUC values. To address this challenge, we employed a cutting-edge neural network approach utilizing a dataset comprising CNA profiles from twenty different cancer types. We developed two workflows: the first evaluated the performance of two deep neural networks-one ReLU-based and the other a 2D convolutional network. In the second workflow, we stratified cancer types based on anatomical and physiological classifications, constructing shallow neural networks to differentiate between cancer types within the same cluster. Both approaches demonstrated high AUC values, with deep neural networks achieving a precision of 60%, suggesting a mathematical relationship between CNV type, location, and cancer type. Our findings highlight the potential of using CNA/CNV to aid pathologists in accurately identifying cancer origins with accessible clinical tests.

3.
J Immunol ; 208(8): 2054-2066, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35379749

RESUMO

Neurobehavioral disorders and brain abnormalities have been extensively reported in both Crohn's disease and ulcerative colitis patients. However, the mechanism causing neuropathological disorders in inflammatory bowel disease patients remains unknown. Studies have linked the Th17 subset of CD4+ T cells to brain diseases associated with neuroinflammation and cognitive impairment, including multiple sclerosis, ischemic brain injury, and Alzheimer's disease. To better understand how CD4+ T lymphocytes contribute to brain pathology in chronic intestinal inflammation, we investigated the development of brain inflammation in the T cell transfer model of chronic colitis. Our findings demonstrate that CD4+ T cells infiltrate the brain of colitic Rag1 -/- mice in proportional levels to colitis severity. Colitic mice developed hypothalamic astrogliosis that correlated with neurobehavioral disorders. Moreover, the brain-infiltrating CD4+ T cells expressed Th17 cell transcription factor retinoic acid-related orphan receptor γt (RORγt) and displayed a pathogenic Th17 cellular phenotype similar to colonic Th17 cells. Adoptive transfer of RORγt-deficient naive CD4+ T cells failed to cause brain inflammation and neurobehavioral disorders in Rag1 -/- recipients, with significantly less brain infiltration of CD4+ T cells. The finding is mirrored in chronic dextran sulfate sodium-induced colitis in Rorcfl/fl Cd4-Cre mice that showed lower frequency of brain-infiltrating CD4+ T cells and astrogliosis despite onset of significantly more severe colitis compared with wild-type mice. These findings suggest that pathogenic RORγt+CD4+ T cells that aggravate colitis migrate preferentially into the brain, contributing to brain inflammation and neurobehavioral disorders, thereby linking colitis severity to neuroinflammation.


Assuntos
Colite , Encefalite , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Proteínas de Transporte , Colite/patologia , Modelos Animais de Doenças , Gliose/complicações , Gliose/patologia , Proteínas de Homeodomínio/genética , Humanos , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Receptores do Ácido Retinoico , Células Th17/metabolismo
4.
Planta Med ; 90(11): 834-843, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38944033

RESUMO

Ginger (Zingiber officinale) has a rich history of traditional medicinal use and has attracted a global interest in its health benefits. This study aims to provide insights into the clinical research landscape on ginger, focusing on its pharmacological effects and studied health-related outcomes. The study design involves systematic analysis of data from clinical trials available on ClinicalTrials.gov and discussion of findings in the context of the existing scientific knowledge. A comprehensive analysis of clinical trials registered on ClinicalTrials.gov related to ginger was first conducted, and the scientific background related to specific ginger clinical research avenues was further evaluated through PubMed searches. A variety of trial designs were identified, including treatment, prevention, and supportive care objectives. A total of 188 studies were identified on ClinicalTrials.gov, of which 89 met the inclusion criteria. Among the 89 trials, treatment objectives were predominant (47.2%), and dietary supplements (40.4%) and drugs (27%) were the most prevalent intervention types. These trials covered various health outcomes, such as antiemetic activity, analgesic function, effects on health-related quality of life, blood pressure variation, energy expenditure, and reduction in xerostomia. This study analysis provides a comprehensive overview of the clinical trials landscape on ginger, focusing on its broad spectrum of potential health benefits. While individual trials show promising results, a significant gap in the available data with a low reporting rate of final results is identified, underscoring the need for further research to establish conclusive evidence of ginger's therapeutic potentials.


Assuntos
Ensaios Clínicos como Assunto , Zingiber officinale , Zingiber officinale/química , Humanos , Qualidade de Vida , Fitoterapia , Suplementos Nutricionais , Extratos Vegetais/uso terapêutico , Extratos Vegetais/farmacologia , Antieméticos/uso terapêutico
5.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000086

RESUMO

Currently, pharmacotherapy provides successful seizure control in around 70% of patients with epilepsy; however, around 30% of cases are still resistant to available treatment. Therefore, effective anti-epileptic therapy still remains a challenge. In our study, we utilized two mouse lines selected for low (LA) and high (HA) endogenous opioid system activity to investigate the relationship between down- or upregulation of the opioid system and susceptibility to seizures. Pentylenetetrazole (PTZ) is a compound commonly used for kindling of generalized tonic-clonic convulsions in animal models. Our experiments revealed that in the LA mice, PTZ produced seizures of greater intensity and shorter latency than in HA mice. This observation suggests that proper opioid system tone is crucial for preventing the onset of generalized tonic-clonic seizures. Moreover, a combination of an opioid receptor antagonist-naloxone-and a GABA receptor agonist-diazepam (DZP)-facilitates a significant DZP-sparing effect. This is particularly important for the pharmacotherapy of neurological patients, since benzodiazepines display high addiction risk. In conclusion, our study shows a meaningful, protective role of the endogenous opioid system in the prevention of epileptic seizures and that disturbances in that balance may facilitate seizure occurrence.


Assuntos
Pentilenotetrazol , Convulsões , Animais , Pentilenotetrazol/toxicidade , Camundongos , Convulsões/metabolismo , Convulsões/tratamento farmacológico , Convulsões/induzido quimicamente , Masculino , Naloxona/farmacologia , Modelos Animais de Doenças , Diazepam/farmacologia , Suscetibilidade a Doenças , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Antagonistas de Entorpecentes/farmacologia
6.
Curr Issues Mol Biol ; 45(4): 3446-3461, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37185750

RESUMO

Colorectal cancer is the third most frequently diagnosed cancer in the world. Despite extensive studies and apparent progress in modern strategies for disease control, the treatment options are still not sufficient and effective, mostly due to frequently encountered resistance to immunotherapy of colon cancer patients in common clinical practice. In our study, we aimed to uncover the CCL9 chemokine action employing the murine model of colon cancer to seek new, potential molecular targets that could be promising in the development of colon cancer therapy. Mouse CT26.CL25 colon cancer cell line was used for introducing lentivirus-mediated CCL9 overexpression. The blank control cell line contained an empty vector, while the cell line marked as CCL9+ carried the CCL9-overexpressing vector. Next, cancer cells with empty vector (control) or CCL9-overexpressing cells were injected subcutaneously, and the growing tumors were measured within 2 weeks. Surprisingly, CCL9 contributed to a decline in tumor growth in vivo but had no effect on CT26.CL25 cell proliferation or migration in vitro. Microarray analysis of the collected tumor tissues revealed upregulation of the immune system-related genes in the CCL9 group. Obtained results suggest that CCL9 reveals its anti-proliferative functions by interplay with host immune cells and mediators that were absent in the isolated, in vitro system. Under specific study conditions, we determined unknown features of the murine CCL9 that have so far bee reported to be predominantly pro-oncogenic.

7.
Curr Issues Mol Biol ; 45(1): 628-648, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36661528

RESUMO

Regulatory T cell (Treg) suppression of conventional T cells is a central mechanism that ensures immune system homeostasis. The exact time point of Treg emergence is still disputed. Furthermore, the time of Treg-mediated suppression mechanisms' emergence has not been identified. It is not yet known whether Treg suppression mechanisms diverged from a single pathway or converged from several sources. We investigated the evolutionary history of Treg suppression pathways using various phylogenetic analysis tools. To ensure the conservation of function for investigated proteins, we augmented our study using nonhomology-based methods to predict protein functions among various investigated species and mined the literature for experimental evidence of functional convergence. Our results indicate that a minority of Treg suppressor mechanisms could be homologs of ancient conserved pathways. For example, CD73, an enzymatic pathway known to play an essential role in invertebrates, is highly conserved between invertebrates and vertebrates, with no evidence of positive selection (w = 0.48, p-value < 0.00001). Our findings indicate that Tregs utilize homologs of proteins that diverged in early vertebrates. However, our findings do not exclude the possibility of a more evolutionary pattern following the duplication degeneration−complementation (DDC) model. Ancestral sequence reconstruction showed that Treg suppression mechanism proteins do not belong to one family; rather, their emergence seems to follow a convergent evolutionary pattern.

8.
Immunogenetics ; 75(5): 417-423, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430007

RESUMO

Controlling CD4+ immune cell infiltration of the brain is a leading aim in designing therapeutic strategies for a range of neuropathological disorders such as multiple sclerosis, Alzheimer's disease, and depression. CD4+ T cells are a highly heterogeneous and reprogrammable family, which includes various distinctive cell types such as Th17, Th1, and Treg cells. Interestingly Th17 and Treg cells share a related transcriptomic profile, where the TGFß-SMADS pathway plays a fundamental role in regulating the differentiation of both of these cell types. However, Th17 could be highly pathogenic and was shown to promote inflammation in various neuropathological disorders. Conversely, Treg is anti-inflammatory and is known to inhibit Th17. It could be noticed that Th17 frequencies of infiltration of the blood-brain barrier in various neurological disorders are significantly upregulated. However, Treg infiltration numbers are significantly low. The reasons behind these contradicting observations are still unknown. In this perspective, we propose that the difference in the T-cell receptor repertoire diversity, diapedesis pathways, chemokine expression, and mechanical properties of these two cell types could be contributing to answering this intriguing question.


Assuntos
Esclerose Múltipla , Linfócitos T Reguladores , Humanos , Barreira Hematoencefálica , Fator de Crescimento Transformador beta/genética , Diferenciação Celular , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Células Th17/patologia , Células Th17/fisiologia
9.
J Immunol ; 207(8): 2027-2038, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34518282

RESUMO

RORγt is the master transcription factor for the Th17 cells. Paradoxically, in the intestine, RORγt is coexpressed in peripherally induced regulatory T cells (pTregs) together with Foxp3, the master transcription factor for Tregs. Unexpectedly, by an unknown mechanism, colonic RORγt+ Tregs show an enhanced suppressor function and prevent intestinal inflammation more efficiently than RORγt-nonexpressing pTregs. Although studies have elucidated the function of RORγt in Th17 cells, how RORγt regulates pTreg function is not understood. In our attempt to understand the role of RORγt in controlling Treg function, we discovered a RORγt-driven pathway that modulates the regulatory (suppressor) function of colonic Tregs. We found that RORγt plays an essential role in maintaining Foxp3 expression. RORγt-deficient Tregs failed to sustain Foxp3 expression with concomitant upregulation of T-bet and IFN-γ expressions. During colitis induced by adoptive transfer of CD45RBhi cells in Rag1 -/- mice, RORγt-deficient colonic Tregs transitioned to a Th1-like effector phenotype and lost their suppressor function, leading to severe colitis with significant mortality. Accordingly, Foxp3-expressing, RORγt-deficient Tregs showed impaired therapeutic efficacy in ameliorating colitis that is not due to their reduced survival. Moreover, using the Treg-specific RORγt and T-bet double-deficient gene knockout mouse, we demonstrate that deletion of T-bet from RORγt-deficient Tregs restored Foxp3 expression and suppression function as well as prevented onset of severe colitis. Mechanistically, our study suggests that RORγt-mediated repression of T-bet is critical to regulating the immunosuppressive function of colonic Tregs during the inflammatory condition.


Assuntos
Colite/imunologia , Colo/imunologia , Fatores de Transcrição Forkhead/metabolismo , Doenças Inflamatórias Intestinais/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Proteínas com Domínio T/metabolismo , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Células Th17/imunologia , Transferência Adotiva , Animais , Células Cultivadas , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Humanos , Tolerância Imunológica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Proteínas com Domínio T/genética
10.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37569317

RESUMO

The MCC family of genes plays a role in colorectal cancer development through various immunological pathways, including the Th17/Treg axis. We have previously shown that MCC1 but not MCC2 plays a role in Treg differentiation. Our understanding of the genetic divergence patterns and evolutionary history of the MCC family in relation to its function, in general, and the Th17/Treg axis, in particular, remains incomplete. In this investigation, we explored 12 species' genomes to study the phylogenetic origin, structure, and functional specificity of this family. In vertebrates, both MCC1 and MCC2 homologs have been discovered, while invertebrates have a single MCC homolog. We found MCC homologs as early as Cnidarians and Trichoplax, suggesting that the MCC family first appeared 741 million years ago (Ma), whereas MCC divergence into the MCC1 and MCC2 families occurred at 540 Ma. In general, we did not detect significant positive selection regulating MCC evolution. Our investigation, based on MCC1 structural similarity, suggests that they may play a role in the evolutionary changes in Tregs' emergence towards complexity, including the ability to utilize calcium for differentiation through the use of the EFH calcium-binding domain. We also found that the motif NPSTGE was highly conserved in MCC1, but not in MCC2. The NPSTGE motif binds KEAP1 with high affinity, suggesting an Nrf2-mediated function for MCC1. In the case of MCC2, we found that the "modifier of rudimentary" motif is highly conserved. This motif contributes to the regulation of alternative splicing. Overall, our study sheds light on how the evolution of the MCC family is connected to its function in regulating the Th17/Treg axis.


Assuntos
Neoplasias Colorretais , Linfócitos T Reguladores , Animais , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Filogenia , Cálcio , Fator 2 Relacionado a NF-E2/genética , Neoplasias Colorretais/genética , Células Th17
11.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835266

RESUMO

Cancer metastases into the brain constitute one of the most severe, but not uncommon, manifestations of cancer progression. Several factors control how cancer cells interact with the brain to establish metastasis. These factors include mediators of signaling pathways participating in migration, infiltration of the blood-brain barrier, interaction with host cells (e.g., neurons, astrocytes), and the immune system. Development of novel therapies offers a glimpse of hope for increasing the diminutive life expectancy currently forecasted for patients suffering from brain metastasis. However, applying these treatment strategies has not been sufficiently effective. Therefore, there is a need for a better understanding of the metastasis process to uncover novel therapeutic targets. In this review, we follow the journey of various cancer cells from their primary location through the diverse processes that they undergo to colonize the brain. These processes include EMT, intravasation, extravasation, and infiltration of the blood-brain barrier, ending up with colonization and angiogenesis. In each phase, we focus on the pathways engaging molecules that potentially could be drug target candidates.


Assuntos
Neoplasias Encefálicas , Humanos , Neoplasias Encefálicas/metabolismo , Barreira Hematoencefálica/metabolismo , Transdução de Sinais , Metástase Neoplásica/patologia
12.
Molecules ; 27(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36234990

RESUMO

Drug repurposing in the context of neuroimmunological (NI) investigations is still in its primary stages. Drug repurposing is an important method that bypasses lengthy drug discovery procedures and focuses on discovering new usages for known medications. Neuroimmunological diseases, such as Alzheimer's, Parkinson's, multiple sclerosis, and depression, include various pathologies that result from the interaction between the central nervous system and the immune system. However, the repurposing of NI medications is hindered by the vast amount of information that needs mining. We previously presented Adera1.0, which was capable of text mining PubMed for answering query-based questions. However, Adera1.0 was not able to automatically identify chemical compounds within relevant sentences. To challenge the need for repurposing known medications for neuroimmunological diseases, we built a deep neural network named Adera2.0 to perform drug repurposing. The workflow uses three deep learning networks. The first network is an encoder and its main task is to embed text into matrices. The second network uses a mean squared error (MSE) loss function to predict answers in the form of embedded matrices. The third network, which constitutes the main novelty in our updated workflow, also uses a MSE loss function. Its main usage is to extract compound names from relevant sentences resulting from the previous network. To optimize the network function, we compared eight different designs. We found that a deep neural network consisting of an RNN neural network and a leaky ReLU could achieve 0.0001 loss and 67% sensitivity. Additionally, we validated Adera2.0's ability to predict NI drug usage against the DRUG Repurposing Hub database. These results establish the ability of Adera2.0 to repurpose drug candidates that can shorten the development of the drug cycle. The workflow could be download online.


Assuntos
Reposicionamento de Medicamentos , Redes Neurais de Computação , Mineração de Dados , Descoberta de Drogas , Reposicionamento de Medicamentos/métodos , Fluxo de Trabalho
13.
Molecules ; 25(9)2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32380663

RESUMO

Repurposing drugs to target M1 macrophages inflammatory response in depression constitutes a bright alternative for commonly used antidepressants. Depression is a significant type of mood disorder, where patients suffer from pathological disturbances associated with a proinflammatory M1 macrophage phenotype. Presently, the most commonly used antidepressants such as Zoloft and Citalopram can reduce inflammation, but suffer from dangerous side effects without offering specificity toward macrophages. We employed a new strategy for drug repurposing based on the integration of RNA-seq analysis and text mining using deep neural networks. Our system employs a Google semantic AI universal encoder to compute sentences embedding. Sentences similarity is calculated using a sorting function to identify drug compounds. Then sentence relevance is computed using a custom-built convolution differential network. Our system highlighted the NRF2 pathway as a critical drug target to reprogram M1 macrophage response toward an anti-inflammatory profile (M2). Using our approach, we were also able to predict that lipoxygenase inhibitor drug zileuton could modulate NRF2 pathway in vitro. Taken together, our results indicate that reorienting zileuton usage to modulate M1 macrophages could be a novel and safer therapeutic option for treating depression.


Assuntos
Anti-Inflamatórios/farmacologia , Antidepressivos/farmacologia , Hidroxiureia/análogos & derivados , Macrófagos/metabolismo , Animais , Inteligência Artificial , Células Cultivadas , Mineração de Dados , Reposicionamento de Medicamentos , Hidroxiureia/farmacologia , Lipopolissacarídeos/efeitos adversos , Macrófagos/efeitos dos fármacos , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Redes Neurais de Computação , Células RAW 264.7 , Semântica , Análise de Sequência de RNA , Transdução de Sinais/efeitos dos fármacos
14.
Mol Syst Biol ; 13(12): 959, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29242366

RESUMO

Mutually exclusive splicing of exons is a mechanism of functional gene and protein diversification with pivotal roles in organismal development and diseases such as Timothy syndrome, cardiomyopathy and cancer in humans. In order to obtain a first genomewide estimate of the extent and biological role of mutually exclusive splicing in humans, we predicted and subsequently validated mutually exclusive exons (MXEs) using 515 publically available RNA-Seq datasets. Here, we provide evidence for the expression of over 855 MXEs, 42% of which represent novel exons, increasing the annotated human mutually exclusive exome more than fivefold. The data provide strong evidence for the existence of large and multi-cluster MXEs in higher vertebrates and offer new insights into MXE evolution. More than 82% of the MXE clusters are conserved in mammals, and five clusters have homologous clusters in Drosophila Finally, MXEs are significantly enriched in pathogenic mutations and their spatio-temporal expression might predict human disease pathology.


Assuntos
Splicing de RNA/genética , Animais , Análise por Conglomerados , Doença/genética , Evolução Molecular , Éxons/genética , Loci Gênicos , Genoma Humano , Humanos , Mamíferos/genética , Mutação/genética , Dobramento de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
15.
J Bioeth Inq ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164608

RESUMO

Bioethics plays a pivotal role in guiding ethical decision-making within the realm of medical research and healthcare. However, the influence of geopolitics on bioethical considerations, particularly regarding bioweapons research, remains an underexplored area. This study delves into the uncharted territory of how international political interests can intersect with bioethical principles, potentially shaping collaborative efforts and global health policies related to bioweapons research. Through a hypothetical scenario involving a hypothetical pathogen, a collaborative effort between unspecified countries, we examine the implications of such cooperation on global health governance, with a specific focus on bioweapons research. Ethical dilemmas surrounding responsible research, potential risks and benefits, equitable distribution of findings, and biosafety measures are explored. This analysis underscores the importance of transparent and responsible practices in bioweapons research amidst geopolitical tensions. By striking a balance between national interests and international solidarity, we advocate for robust bioethical frameworks to navigate such collaborations for the collective well-being of humanity and to mitigate potential risks associated with bioweapons research.

16.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38543181

RESUMO

Adverse drug reactions continue to be not only one of the most urgent problems in clinical medicine, but also a social problem. The aim of this study was a bibliometric analysis of the use of digital technologies to prevent adverse drug reactions and an overview of their main applications to improve the safety of pharmacotherapy. The search was conducted using the Web of Science database for the period 1991-2023. A positive trend in publications in the field of using digital technologies in the management of adverse drug reactions was revealed. A total of 72% of all relevant publications come from the following countries: the USA, China, England, India, and Germany. Among the organizations most active in the field of drug side effect management using digital technologies, American and Chinese universities dominate. Visualization of publication keywords using VOSviewer software 1.6.18 revealed four clusters: "preclinical studies", "clinical trials", "pharmacovigilance", and "reduction of adverse drug reactions in order to improve the patient's quality of life". Molecular design technologies, virtual models for toxicity modeling, data integration, and drug repurposing are among the key digital tools used in the preclinical research phase. Integrating the application of machine learning algorithms for data analysis, monitoring of electronic databases of spontaneous messages, electronic medical records, scientific databases, social networks, and analysis of digital device data into clinical trials and pharmacovigilance systems, can significantly improve the efficiency and safety of drug development, implementation, and monitoring processes. The result of combining all these technologies is a huge synergistic provision of up-to-date and valuable information to healthcare professionals, patients, and health authorities.

17.
Genes (Basel) ; 13(5)2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35627275

RESUMO

The relationship between the evolutionary history and the differentiation of Bregs is still not clear. Bregs were demonstrated to possess a regulatory effect on B cells. Various subsets of Bregs have been identified including T2-MZP, MZ, B10, IL10-producing plasma cells, IL10 producing plasmablasts, immature IL10 producing B cells, TIM1, and Br1. It is known that B cells have evolved during fish emergence. However, the origin of Bregs is still not known. Three main models have been previously proposed to describe the origin of Bregs, the first known as single-single (SS) suggests that each type of Bregs subpopulation has emerged from a single pre-Breg type. The second model (single-multi) (SM) assumes that a single Bregs gave rise to multiple types of Bregs that in turn differentiated to other Breg subpopulations. In the third model (multi-multi) (MM), it is hypothesized that Bregs arise from the nearest B cell phenotype. The link between the differentiation of cells and the evolution of novel types of cells is known to follow one of three evolutionary patterns (i.e., homology, convergence, or concerted evolution). Another aspect that controls differentiation and evolution processes is the principle of optimization of energy, which suggests that an organism will always use the choice that requires less energy expenditure for survival. In this review, we investigate the evolution of Breg subsets. We studied the feasibility of Breg origination models based on evolution and energy constraints. In conclusion, our review indicates that Bregs are likely to have evolved under a combination of SM-MM models. This combination ensured successful survival in harsh conditions by following the least costly differentiation pathway, as well as adapting to changing environmental conditions.


Assuntos
Linfócitos B Reguladores , Interleucina-10 , Animais , Linfócitos B Reguladores/metabolismo , Diferenciação Celular
18.
Insects ; 12(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34680651

RESUMO

Understanding the evolutionary relationship between immune cells and the blood-brain barrier (BBB) is important to devise therapeutic strategies. In vertebrates, immune cells follow either a paracellular or a transcellular pathway to infiltrate the BBB. In Drosophila, glial cells form the BBB that regulates the access of hemocytes to the brain. However, it is still not known which diapedesis route hemocytes cells follow. In vertebrates, paracellular migration is dependent on PECAM1, while transcellular migration is dependent on the expression of CAV1. Interestingly Drosophila genome lacks both genes. Tre1 family (Tre1, moody, and Dmel_CG4313) play a diverse role in regulating transepithelial migration in Drosophila. However, its evolutionary history and origin are not yet known. We performed phylogenetic analysis, together with HH search, positive selection, and ancestral reconstruction to investigate the Tre1 family. We found that Tre1 exists in Mollusca, Arthropoda, Ambulacraria, and Scalidophora. moody is shown to be a more ancient protein and it has existed since Cnidaria emergence and has a homolog (e.g., GPCR84) in mammals. The third family member (Dmel_CG4313) seems to only exist in insects. The origin of the family seems to be related to the rhodopsin-like family and in particular family α. We found that opsin is the nearest receptor to have a common ancestor with the Tre1 family that has diverged in sponges. We investigated the positive selection of the Tre1 family using PAML. Tre1 seems to have evolved under negative selection, whereas moody has evolved during positive selection. The sites that we found under positive selection are likely to play a role in the speciation of function in the case of moody. We have identified an SH3 motif, in Tre1 and, moody and Dmel_CG4313. SH3 is known to play a fundamental role in regulating actin movement in a Rho-dependent manner in PECAM1. Our results suggest that the Tre1 family could be playing an important role in paracellular diapedesis in Drosophila.

19.
Genes (Basel) ; 12(2)2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578809

RESUMO

Infiltration of the endothelial layer of the blood-brain barrier by leukocytes plays a critical role in health and disease. When passing through the endothelial layer during the diapedesis process lymphocytes can either follow a paracellular route or a transcellular one. There is a debate whether these two processes constitute one mechanism, or they form two evolutionary distinct migration pathways. We used artificial intelligence, phylogenetic analysis, HH search, ancestor sequence reconstruction to investigate further this intriguing question. We found that the two systems share several ancient components, such as RhoA protein that plays a critical role in controlling actin movement in both mechanisms. However, some of the key components differ between these two transmigration processes. CAV1 genes emerged during Trichoplax adhaerens, and it was only reported in transcellular process. Paracellular process is dependent on PECAM1. PECAM1 emerged from FASL5 during Zebrafish divergence. Lastly, both systems employ late divergent genes such as ICAM1 and VECAM1. Taken together, our results suggest that these two systems constitute two different mechanical sensing mechanisms of immune cell infiltrations of the brain, yet these two systems are connected. We postulate that the mechanical properties of the cellular polarity is the main driving force determining the migration pathway. Our analysis indicates that both systems coevolved with immune cells, evolving to a higher level of complexity in association with the evolution of the immune system.


Assuntos
Células Endoteliais/metabolismo , Leucócitos/metabolismo , Proteínas/genética , Migração Transcelular de Célula/genética , Transcriptoma , Migração Transendotelial e Transepitelial/genética , Animais , Evolução Biológica , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/metabolismo , Caenorhabditis elegans/classificação , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Galinhas/classificação , Galinhas/genética , Galinhas/metabolismo , Ciona intestinalis/classificação , Ciona intestinalis/citologia , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Drosophila melanogaster/classificação , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células Endoteliais/citologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Humanos , Leucócitos/citologia , Camundongos , Pan troglodytes/classificação , Pan troglodytes/genética , Pan troglodytes/metabolismo , Petromyzon/classificação , Petromyzon/genética , Petromyzon/metabolismo , Filogenia , Placozoa/classificação , Placozoa/citologia , Placozoa/genética , Placozoa/metabolismo , Proteínas/classificação , Proteínas/metabolismo , Anêmonas-do-Mar/classificação , Anêmonas-do-Mar/citologia , Anêmonas-do-Mar/genética , Anêmonas-do-Mar/metabolismo , Tubarões/classificação , Tubarões/genética , Tubarões/metabolismo , Peixe-Zebra/classificação , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
20.
Front Glob Womens Health ; 2: 698151, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34816235

RESUMO

The effect of social lockdown during the COVID-19 outbreak on female aggressiveness is not well known. The strict measures of lockdown have resulted in millions of people, worldwide, confined to their homes during the pandemic. However, the consequence of lockdown strategies on females' psychological status including aggressiveness has not yet been investigated. We conducted a cross-sectional study on 31 Russian females' homemakers who are participants in an online fitness platform to investigate the immediate anxiety, depression, and aggression experienced under strict lockdown measures. The participants were surveyed using the hospital anxiety depression scale (HADS) and the Buss-Perry Aggression Questionnaire. We used descriptive and statistical methods to investigate the prevalence of these emotions among two age groups (20-35 and 36-65 years). We found that moderate anxiety prevalence was 77.4% in the entire group while mild depression was 54.8%. Interestingly, the whole sample showed a high level of angriness (p = 0.0002) and physical aggression (p = 0.019). These two emotions seem to be more prevalent than other negative emotions such as hostility, verbal aggression. This relationship was not dependent on age. Overall, there is a significant worsening in female aggression that could lead to higher chances of female victimization and being subjected to partner violence. Future policies designing lockdown strategies should consider this effect on active female homemakers. Due to the small size of our cohort, our results are only indicative of data trends. Larger studies are still needed to confirm the current findings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA