Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 586(7827): 139-144, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32968280

RESUMO

The three-dimensional organization of the genome supports regulated gene expression, recombination, DNA repair, and chromosome segregation during mitosis. Chromosome conformation capture (Hi-C)1,2 analysis has revealed a complex genomic landscape of internal chromosomal structures in vertebrate cells3-7, but the identical sequence of sister chromatids has made it difficult to determine how they topologically interact in replicated chromosomes. Here we describe sister-chromatid-sensitive Hi-C (scsHi-C), which is based on labelling of nascent DNA with 4-thio-thymidine and nucleoside conversion chemistry. Genome-wide conformation maps of human chromosomes reveal that sister-chromatid pairs interact most frequently at the boundaries of topologically associating domains (TADs). Continuous loading of a dynamic cohesin pool separates sister-chromatid pairs inside TADs and is required to focus sister-chromatid contacts at TAD boundaries. We identified a subset of TADs that are overall highly paired and are characterized by facultative heterochromatin and insulated topological domains that form separately within individual sister chromatids. The rich pattern of sister-chromatid topologies and our scsHi-C technology will make it possible to investigate how physical interactions between identical DNA molecules contribute to DNA repair, gene expression, chromosome segregation, and potentially other biological processes.


Assuntos
Cromátides/química , Pareamento Cromossômico , Replicação do DNA , Genoma Humano/genética , Conformação de Ácido Nucleico , Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA/análise , DNA/biossíntese , Heterocromatina/química , Heterocromatina/genética , Heterocromatina/metabolismo , Humanos , Coesinas
2.
Nucleic Acids Res ; 52(8): 4691-4701, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38567725

RESUMO

Understanding small molecule binding to RNA can be complicated by an intricate interplay between binding stoichiometry, multiple binding motifs, different occupancies of different binding motifs, and changes in the structure of the RNA under study. Here, we use native top-down mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy to experimentally resolve these factors and gain a better understanding of the interactions between neomycin B and the 40 nt aptamer domain of a neomycin-sensing riboswitch engineered in yeast. Data from collisionally activated dissociation of the 1:1, 1:2 and 1:3 RNA-neomycin B complexes identified a third binding motif C of the riboswitch in addition to the two motifs A and B found in our previous study, and provided occupancies of the different binding motifs for each complex stoichiometry. Binding of a fourth neomycin B molecule was unspecific according to both MS and NMR data. Intriguingly, all major changes in the aptamer structure can be induced by the binding of the first neomycin B molecule regardless of whether it binds to motif A or B as evidenced by stoichiometry-resolved MS data together with titration data from 1H NMR spectroscopy in the imino proton region. Specific binding of the second and third neomycin B molecules further stabilizes the riboswitch aptamer, thereby allowing for a gradual response to increasing concentrations of neomycin B, which likely leads to a fine-tuning of the cellular regulatory mechanism.


Assuntos
Aptâmeros de Nucleotídeos , Framicetina , Riboswitch , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Aptâmeros de Nucleotídeos/genética , Sítios de Ligação , Framicetina/química , Framicetina/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Motivos de Nucleotídeos
3.
Nucleic Acids Res ; 52(3): 1374-1386, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38050960

RESUMO

tRNA superwobbling, used by certain bacteria and organelles, is an intriguing decoding concept in which a single tRNA isoacceptor is used to decode all synonymous codons of a four-fold degenerate codon box. While Escherichia coli relies on three tRNAGly isoacceptors to decode the four glycine codons (GGN), Mycoplasma mycoides requires only a single tRNAGly. Both organisms express tRNAGly with the anticodon UCC, which are remarkably similar in sequence but different in their decoding ability. By systematically introducing mutations and altering the number and type of tRNA modifications using chemically synthesized tRNAs, we elucidated the contribution of individual nucleotides and chemical groups to decoding by the E. coli and M. mycoides tRNAGly. The tRNA sequence was identified as the key factor for superwobbling, revealing the T-arm sequence as a novel pivotal element. In addition, the presence of tRNA modifications, although not essential for providing superwobbling, was shown to delicately fine-tune and balance the decoding of synonymous codons. This emphasizes that the tRNA sequence and its modifications together form an intricate system of high complexity that is indispensable for accurate and efficient decoding.


Assuntos
Escherichia coli , Mycoplasma mycoides , RNA Bacteriano , RNA de Transferência de Glicina , Anticódon/genética , Sequência de Bases , Códon/genética , Escherichia coli/genética , Glicina/genética , RNA de Transferência/genética , RNA de Transferência de Glicina/genética , Mycoplasma mycoides/genética , Mycoplasma mycoides/metabolismo , RNA Bacteriano/genética
4.
Nucleic Acids Res ; 51(1): 54-67, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36610789

RESUMO

Riboswitches are conserved non-coding domains in bacterial mRNA with gene regulation function that are essential for maintaining enzyme co-factor metabolism. Recently, the pnuC RNA motif was reported to selectively bind nicotinamide adenine dinucleotide (NAD+), defining a novel class of NAD+ riboswitches (NAD+-II) according to phylogenetic analysis. To reveal the three-dimensional architecture and the ligand-binding mode of this riboswitch, we solved the crystal structure of NAD+-II riboswitch in complex with NAD+. Strikingly and in contrast to class-I riboswitches that form a tight recognition pocket for the adenosine diphosphate (ADP) moiety of NAD+, the class-II riboswitches form a binding pocket for the nicotinamide mononucleotide (NMN) portion of NAD+ and display only unspecific interactions with the adenosine. We support this finding by an additional structure of the class-II RNA in complex with NMN alone. The structures define a novel RNA tertiary fold that was further confirmed by mutational analysis in combination with isothermal titration calorimetry (ITC), and 2-aminopurine-based fluorescence spectroscopic folding studies. Furthermore, we truncated the pnuC RNA motif to a short RNA helical scaffold with binding affinity comparable to the wild-type motif to allude to the potential of engineering the NAD+-II motif for biotechnological applications.


Assuntos
Riboswitch , NAD/metabolismo , Filogenia , Ligantes , RNA/genética
5.
Acc Chem Res ; 56(19): 2713-2725, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37728742

RESUMO

Protein biosynthesis is a central process in all living cells that is catalyzed by a complex molecular machine─the ribosome. This process is termed translation because the language of nucleotides in mRNAs is translated into the language of amino acids in proteins. Transfer RNA (tRNA) molecules charged with amino acids serve as adaptors and recognize codons of mRNA in the decoding center while simultaneously the individual amino acids are assembled into a peptide chain in the peptidyl transferase center (PTC). As the nascent peptide emerges from the ribosome, it is threaded through a long tunnel referred to as a nascent peptide exit tunnel (NPET). The PTC and NPET are the sites targeted by many antibiotics and are thus of tremendous importance from a biomedical perspective and for drug development in the pharmaceutical industry.Researchers have achieved much progress in characterizing ribosomal translation at the molecular level; an impressive number of high-resolution structures of different functional and inhibited states of the ribosome are now available. These structures have significantly contributed to our understanding of how the ribosome interacts with its key substrates, namely, mRNA, tRNAs, and translation factors. In contrast, much less is known about the mechanisms of how small molecules, especially antibiotics, affect ribosomal protein synthesis. This mainly concerns the structural basis of small molecule-NPET interference with cotranslational protein folding and the regulation of protein synthesis. Growing biochemical evidence suggests that NPET plays an active role in the regulation of protein synthesis.Much-needed progress in this field is hampered by the fact that during the preparation of ribosome complexes for structural studies (i.e., X-ray crystallography, cryoelectron microscopy, and NMR spectroscopy) the aminoacyl- or peptidyl-tRNAs are unstable and become hydrolyzed. A solution to this problem is the application of hydrolysis-resistant mimics of aminoacyl- or peptidyl-tRNAs.In this Account, we present an overview of synthetic methods for the generation of peptidyl-tRNA analogs. Modular approaches have been developed that combine (i) RNA and peptide solid-phase synthesis on 3'-aminoacylamino-adenosine resins, (ii) native chemical ligations and Staudinger ligations, (iii) tailoring of tRNAs by the selective cleavage of natural native tRNAs with DNAzymes followed by reassembly with enzymatic ligation to synthetic peptidyl-RNA fragments, and (iv) enzymatic tailing and cysteine charging of the tRNA to obtain modified CCA termini of a tRNA that are chemically ligated to the peptide moiety of interest. With this arsenal of tools, in principle, any desired sequence of a stably linked peptidyl-tRNA mimic is accessible. To underline the significance of the synthetic conjugates, we briefly point to the most critical applications that have shed new light on the molecular mechanisms underlying the context-specific activity of ribosome-targeting antibiotics, ribosome-dependent incorporation of multiple consecutive proline residues, the incorporation of d-amino acids, and tRNA mischarging.Furthermore, we discuss new types of stably charged tRNA analogs, relying on triazole- and squarate (instead of amide)-linked conjugates. Those have pushed forward our mechanistic understanding of nonribosomal peptide synthesis, where aminoacyl-tRNA-dependent enzymes are critically involved in various cellular processes in primary and secondary metabolism and in bacterial cell wall synthesis.


Assuntos
RNA de Transferência , RNA , Microscopia Crioeletrônica , Aminoácidos , Biossíntese de Proteínas , Peptídeos/química , Antibacterianos/farmacologia , RNA Mensageiro , Biologia
6.
Nucleic Acids Res ; 50(11): 6038-6051, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35687141

RESUMO

Nucleobase deamination, such as A-to-I editing, represents an important posttranscriptional modification of RNA. When deamination affects guanosines, a xanthosine (X) containing RNA is generated. However, the biological significance and chemical consequences on RNA are poorly understood. We present a comprehensive study on the preparation and biophysical properties of X-modified RNA. Thermodynamic analyses revealed that base pairing strength is reduced to a level similar to that observed for a G•U replacement. Applying NMR spectroscopy and X-ray crystallography, we demonstrate that X can form distinct wobble geometries with uridine depending on the sequence context. In contrast, X pairing with cytidine occurs either through wobble geometry involving protonated C or in Watson-Crick-like arrangement. This indicates that the different pairing modes are of comparable stability separated by low energetic barriers for switching. Furthermore, we demonstrate that the flexible pairing properties directly affect the recognition of X-modified RNA by reverse transcription enzymes. Primer extension assays and PCR-based sequencing analysis reveal that X is preferentially read as G or A and that the ratio depends on the type of reverse transcriptase. Taken together, our results elucidate important properties of X-modified RNA paving the way for future studies on its biological significance.


Assuntos
Processamento Pós-Transcricional do RNA , RNA , Xantinas , Pareamento de Bases , Desaminação , Conformação de Ácido Nucleico , RNA/química , RNA/genética , Ribonucleosídeos , Xantinas/química
7.
Nucleic Acids Res ; 50(18): 10785-10800, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36169220

RESUMO

Substitution of the queuine nucleobase precursor preQ1 by an azide-containing derivative (azido-propyl-preQ1) led to incorporation of this clickable chemical entity into tRNA via transglycosylation in vitro as well as in vivo in Escherichia coli, Schizosaccharomyces pombe and human cells. The resulting semi-synthetic RNA modification, here termed Q-L1, was present in tRNAs on actively translating ribosomes, indicating functional integration into aminoacylation and recruitment to the ribosome. The azide moiety of Q-L1 facilitates analytics via click conjugation of a fluorescent dye, or of biotin for affinity purification. Combining the latter with RNAseq showed that TGT maintained its native tRNA substrate specificity in S. pombe cells. The semi-synthetic tRNA modification Q-L1 was also functional in tRNA maturation, in effectively replacing the natural queuosine in its stimulation of further modification of tRNAAsp with 5-methylcytosine at position 38 by the tRNA methyltransferase Dnmt2 in S. pombe. This is the first demonstrated in vivo integration of a synthetic moiety into an RNA modification circuit, where one RNA modification stimulates another. In summary, the scarcity of queuosinylation sites in cellular RNA, makes our synthetic q/Q system a 'minimally invasive' system for placement of a non-natural, clickable nucleobase within the total cellular RNA.


Assuntos
Nucleosídeo Q , Schizosaccharomyces , 5-Metilcitosina/metabolismo , Azidas , Biotina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Corantes Fluorescentes/metabolismo , Humanos , Nucleosídeo Q/química , RNA de Transferência/metabolismo , RNA de Transferência de Ácido Aspártico/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , tRNA Metiltransferases/metabolismo
8.
Angew Chem Int Ed Engl ; 63(22): e202403063, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38529723

RESUMO

Ribonucleic acids (RNAs) play a vital role in living organisms. Many of their cellular functions depend critically on chemical modification. Methods to modify RNA in a controlled manner-both in vitro and in vivo-are thus essential to evaluate and understand RNA biology at the molecular and mechanistic levels. The diversity of modifications, combined with the size and uniformity of RNA (made up of only 4 nucleotides) makes its site-specific modification a challenging task that needs to be addressed by complementary approaches. One such approach is solid-phase RNA synthesis. We discuss recent developments in this field, starting with new protection concepts in the ongoing effort to overcome current size limitations. We continue with selected modifications that have posed significant challenges for their incorporation into RNA. These include deazapurine bases required for atomic mutagenesis to elucidate mechanistic aspects of catalytic RNAs, and RNA containing xanthosine, N4-acetylcytidine, 5-hydroxymethylcytidine, 3-methylcytidine, 2'-OCF3, and 2'-N3 ribose modifications. We also discuss the all-chemical synthesis of 5'-capped mRNAs and the enzymatic ligation of chemically synthesized oligoribonucleotides to obtain long RNA with multiple distinct modifications, such as those needed for single-molecule FRET studies. Finally, we highlight promising developments in RNA-catalyzed RNA modification using cofactors that transfer bioorthogonal functionalities.


Assuntos
RNA , RNA/química , RNA/síntese química , Técnicas de Síntese em Fase Sólida/métodos
9.
J Am Chem Soc ; 145(28): 15284-15294, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37420313

RESUMO

Understanding how ligands bind to ribonucleic acids (RNA) is important for understanding RNA recognition in biological processes and drug development. Here, we have studied neomycin B binding to neomycin-sensing riboswitch aptamer constructs by native top-down mass spectrometry (MS) using electrospray ionization (ESI) and collisionally activated dissociation (CAD). Our MS data for a 27 nt aptamer construct reveal the binding site and ligand interactions, in excellent agreement with the structure derived from nuclear magnetic resonance (NMR) studies. Strikingly, for an extended 40 nt aptamer construct, which represents the sequence with the highest regulatory factor for riboswitch function, we identified two binding motifs for neomycin B binding, one corresponding to the bulge-loop motif of the 27 nt construct and the other one in the minor groove of the lower stem, which according to the MS data are equally populated. By replacing a noncanonical with a canonical base pair in the lower stem of the 40 nt aptamer, we can reduce binding to the minor groove motif from ∼50 to ∼30%. Conversely, the introduction of a CUG/CUG motif in the lower stem shifts the binding equilibrium in favor of minor groove binding. The MS data reveal site-specific and stoichiometry-resolved information on aminoglycoside binding to RNA that is not directly accessible by other methods and underscore the role of noncanonical base pairs in RNA recognition by aminoglycosides.


Assuntos
Neomicina , Riboswitch , Framicetina , Antibacterianos/metabolismo , Aminoglicosídeos , RNA , Espectrometria de Massas , Sítios de Ligação , Conformação de Ácido Nucleico , Ligantes
10.
Chemistry ; 29(60): e202302220, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37534701

RESUMO

Fluorine labeling of ribonucleic acids (RNA) in conjunction with 19 F NMR spectroscopy has emerged as a powerful strategy for spectroscopic analysis of RNA structure and dynamics, and RNA-ligand interactions. This study presents the first syntheses of 2'-OCF3 guanosine and uridine phosphoramidites, their incorporation into oligoribonucleotides by solid-phase synthesis and a comprehensive study of their properties. NMR spectroscopic analysis showed that the 2'-OCF3 modification is associated with preferential C2'-endo conformation of the U and G ribose in single-stranded RNA. When paired to the complementary strand, slight destabilization of the duplex caused by the modification was revealed by UV melting curve analysis. Moreover, the power of the 2'-OCF3 label for NMR spectroscopy is demonstrated by dissecting RNA pseudoknot folding and its binding to a small molecule. Furthermore, the 2'-OCF3 modification has potential for applications in therapeutic oligonucleotides. To this end, three 2'-OCF3 modified siRNAs were tested in silencing of the BASP1 gene which indicated enhanced performance for one of them. Importantly, together with earlier work, the present study completes the set of 2'-OCF3 nucleoside phosphoramidites to all four standard nucleobases (A, U, C, G) and hence enables applications that utilize the favorable properties of the 2'-OCF3 group without any restrictions in placing the modification into the RNA target sequence.


Assuntos
Oligonucleotídeos , RNA , RNA/química , RNA Interferente Pequeno/química , Oligonucleotídeos/química , Conformação Molecular , Espectroscopia de Ressonância Magnética , Oligorribonucleotídeos , Conformação de Ácido Nucleico
11.
Nucleic Acids Res ; 49(12): 7139-7153, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34125892

RESUMO

Riboswitches are conserved functional domains in mRNA that mostly exist in bacteria. They regulate gene expression in response to varying concentrations of metabolites or metal ions. Recently, the NMT1 RNA motif has been identified to selectively bind xanthine and uric acid, respectively, both are involved in the metabolic pathway of purine degradation. Here, we report a crystal structure of this RNA bound to xanthine. Overall, the riboswitch exhibits a rod-like, continuously stacked fold composed of three stems and two internal junctions. The binding-pocket is determined by the highly conserved junctional sequence J1 between stem P1 and P2a, and engages a long-distance Watson-Crick base pair to junction J2. Xanthine inserts between a G-U pair from the major groove side and is sandwiched between base triples. Strikingly, a Mg2+ ion is inner-sphere coordinated to O6 of xanthine and a non-bridging oxygen of a backbone phosphate. Two further hydrated Mg2+ ions participate in extensive interactions between xanthine and the pocket. Our structure model is verified by ligand binding analysis to selected riboswitch mutants using isothermal titration calorimetry, and by fluorescence spectroscopic analysis of RNA folding using 2-aminopurine-modified variants. Together, our study highlights the principles of metal ion-mediated ligand recognition by the xanthine riboswitch.


Assuntos
Magnésio/química , Riboswitch , Xantina/química , Sítios de Ligação , Cátions Bivalentes , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Dobramento de RNA
12.
Nucleic Acids Res ; 49(8): 4281-4293, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33856457

RESUMO

Deazapurine nucleosides such as 3-deazaadenosine (c3A) are crucial for atomic mutagenesis studies of functional RNAs. They were the key for our current mechanistic understanding of ribosomal peptide bond formation and of phosphodiester cleavage in recently discovered small ribozymes, such as twister and pistol RNAs. Here, we present a comprehensive study on the impact of c3A and the thus far underinvestigated 3-deazaguanosine (c3G) on RNA properties. We found that these nucleosides can decrease thermodynamic stability of base pairing to a significant extent. The effects are much more pronounced for 3-deazapurine nucleosides compared to their constitutional isomers of 7-deazapurine nucleosides (c7G, c7A). We furthermore investigated base pair opening dynamics by solution NMR spectroscopy and revealed significantly enhanced imino proton exchange rates. Additionally, we solved the X-ray structure of a c3A-modified RNA and visualized the hydration pattern of the minor groove. Importantly, the characteristic water molecule that is hydrogen-bonded to the purine N3 atom and always observed in a natural double helix is lacking in the 3-deazapurine-modified counterpart. Both, the findings by NMR and X-ray crystallographic methods hence provide a rationale for the reduced pairing strength. Taken together, our comparative study is a first major step towards a comprehensive understanding of this important class of nucleoside modifications.


Assuntos
Estabilidade de RNA , RNA/química , Tubercidina/química , Pareamento de Bases , Cristalografia por Raios X , Mutagênese , Purinas/química , RNA/genética , Termodinâmica
13.
J Am Chem Soc ; 144(23): 10344-10352, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35666572

RESUMO

Atomic mutagenesis is the key to advance our understanding of RNA recognition and RNA catalysis. To this end, deazanucleosides are utilized to evaluate the participation of specific atoms in these processes. One of the remaining challenges is access to RNA-containing 1-deazaguanosine (c1G). Here, we present the synthesis of this nucleoside and its phosphoramidite, allowing first time access to c1G-modified RNA. Thermodynamic analyses revealed the base pairing parameters for c1G-modified RNA. Furthermore, by NMR spectroscopy, a c1G-triggered switch of Watson-Crick into Hoogsteen pairing in HIV-2 TAR RNA was identified. Additionally, using X-ray structure analysis, a guanine-phosphate backbone interaction affecting RNA fold stability was characterized, and finally, the critical impact of an active-site guanine in twister ribozyme on the phosphodiester cleavage was revealed. Taken together, our study lays the synthetic basis for c1G-modified RNA and demonstrates the power of the completed deazanucleoside toolbox for RNA atomic mutagenesis needed to achieve in-depth understanding of RNA recognition and catalysis.


Assuntos
RNA Catalítico , RNA , Pareamento de Bases , Guanina , Mutagênese , Conformação de Ácido Nucleico , RNA/química , RNA Catalítico/química
14.
Org Biomol Chem ; 20(39): 7845-7850, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36172831

RESUMO

Azides are versatile bioorthogonal reporter moieties that are commonly used for site-specific labeling and functionalization of RNA to probe its biology. The preparation of azido modified nucleic acids by solid-phase synthesis is problematic due to the inherent reactivity of P(III) species with azides according to the Staudinger reaction. Various strategies have been developed to bypass this limitation and are often time-consuming, low-yielding and labor-intensive. In particular, the synthesis of RNA with internal 2'-azido modifications is restricted to a single approach that employs P(V) chemistry instead of the widely used P(III) phosphoramidite chemistry. To fill this methodological gap, we present a novel convenient path toward 2'-azido RNA from readily accessible 2'-amino RNA through treatment with the diazotizing reagent fluorosulfuryl azide (FSO2N3). A diazotransfer reaction was established for oligoribonucleotides of different lengths and secondary structures. The robustness of the approach was further demonstrated for RNAs containing multiple 2'-azido moieties and for RNAs containing other sensitive modifications such as thiouridine or methylated nucleobases with a positive charge. The synthetic ease of generating 2'-azido RNA will pave the way for biotechnological applications, in particular for siRNA technologies and for referencing the growing number of RNA metabolic labeling approaches that rely on 2'-azido nucleosides.


Assuntos
Azidas , Oligorribonucleotídeos , Azidas/química , RNA Interferente Pequeno , Tiouridina
15.
Nucleic Acids Res ; 48(21): 12394-12406, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33170270

RESUMO

Riboswitches are important gene regulatory elements frequently encountered in bacterial mRNAs. The recently discovered nadA riboswitch contains two similar, tandemly arrayed aptamer domains, with the first domain possessing high affinity for nicotinamide adenine dinucleotide (NAD+). The second domain which comprises the ribosomal binding site in a putative regulatory helix, however, has withdrawn from detection of ligand-induced structural modulation thus far, and therefore, the identity of the cognate ligand and the regulation mechanism have remained unclear. Here, we report crystal structures of both riboswitch domains, each bound to NAD+. Furthermore, we demonstrate that ligand binding to domain 2 requires significantly higher concentrations of NAD+ (or ADP retaining analogs) compared to domain 1. Using a fluorescence spectroscopic approach, we further shed light on the structural features which are responsible for the different ligand affinities, and describe the Mg2+-dependent, distinct folding and pre-organization of their binding pockets. Finally, we speculate about possible scenarios for nadA RNA gene regulation as a putative two-concentration sensor module for a time-controlled signal that is primed and stalled by the gene regulation machinery at low ligand concentrations (domain 1), and finally triggers repression of translation as soon as high ligand concentrations are reached in the cell (domain 2).


Assuntos
Aptâmeros de Nucleotídeos/química , Magnésio/química , NAD/química , RNA Catalítico/química , Ribonucleoproteína Nuclear Pequena U1/química , Riboswitch , Aptâmeros de Nucleotídeos/metabolismo , Sítios de Ligação , Cátions Bivalentes , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Vírus Delta da Hepatite/química , Ligantes , Magnésio/metabolismo , Modelos Moleculares , NAD/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Dobramento de RNA , RNA Catalítico/genética , RNA Catalítico/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleoproteína Nuclear Pequena U1/genética , Ribonucleoproteína Nuclear Pequena U1/metabolismo
16.
Nucleic Acids Res ; 48(7): 3734-3746, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32095818

RESUMO

Reverse transcription (RT) of RNA templates containing RNA modifications leads to synthesis of cDNA containing information on the modification in the form of misincorporation, arrest, or nucleotide skipping events. A compilation of such events from multiple cDNAs represents an RT-signature that is typical for a given modification, but, as we show here, depends also on the reverse transcriptase enzyme. A comparison of 13 different enzymes revealed a range of RT-signatures, with individual enzymes exhibiting average arrest rates between 20 and 75%, as well as average misincorporation rates between 30 and 75% in the read-through cDNA. Using RT-signatures from individual enzymes to train a random forest model as a machine learning regimen for prediction of modifications, we found strongly variegated success rates for the prediction of methylated purines, as exemplified with N1-methyladenosine (m1A). Among the 13 enzymes, a correlation was found between read length, misincorporation, and prediction success. Inversely, low average read length was correlated to high arrest rate and lower prediction success. The three most successful polymerases were then applied to the characterization of RT-signatures of other methylated purines. Guanosines featuring methyl groups on the Watson-Crick face were identified with high confidence, but discrimination between m1G and m22G was only partially successful. In summary, the results suggest that, given sufficient coverage and a set of specifically optimized reaction conditions for reverse transcription, all RNA modifications that impede Watson-Crick bonds can be distinguished by their RT-signature.


Assuntos
DNA Polimerase Dirigida por RNA/metabolismo , Transcrição Reversa , Adenosina/análogos & derivados , Guanosina/química , Guanosina/metabolismo , Aprendizado de Máquina , Metilação , Oligorribonucleotídeos/química , Transcriptoma
17.
Proc Natl Acad Sci U S A ; 116(22): 10783-10791, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31088965

RESUMO

Small self-cleaving ribozymes catalyze site-specific cleavage of their own phosphodiester backbone with implications for viral genome replication, pre-mRNA processing, and alternative splicing. We report on the 2.1-Å crystal structure of the hatchet ribozyme product, which adopts a compact pseudosymmetric dimeric scaffold, with each monomer stabilized by long-range interactions involving highly conserved nucleotides brought into close proximity of the scissile phosphate. Strikingly, the catalytic pocket contains a cavity capable of accommodating both the modeled scissile phosphate and its flanking 5' nucleoside. The resulting modeled precatalytic conformation incorporates a splayed-apart alignment at the scissile phosphate, thereby providing structure-based insights into the in-line cleavage mechanism. We identify a guanine lining the catalytic pocket positioned to contribute to cleavage chemistry. The functional relevance of structure-based insights into hatchet ribozyme catalysis is strongly supported by cleavage assays monitoring the impact of selected nucleobase and atom-specific mutations on ribozyme activity.


Assuntos
RNA Catalítico , Catálise , Vírus Delta da Hepatite/enzimologia , Conformação de Ácido Nucleico , RNA Catalítico/química , RNA Catalítico/metabolismo , RNA Viral/química , RNA Viral/metabolismo
18.
Angew Chem Int Ed Engl ; 61(41): e202207590, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-35982640

RESUMO

Nucleolytic ribozymes utilize general acid-base catalysis to perform phosphodiester cleavage. In most ribozyme classes, a conserved active site guanosine is positioned to act as general base, thereby activating the 2'-OH group to attack the scissile phosphate (γ-catalysis). Here, we present an atomic mutagenesis study for the pistol ribozyme class. Strikingly, "general base knockout" by replacement of the guanine N1 atom by carbon results in only 2.7-fold decreased rate. Therefore, the common view that γ-catalysis critically depends on the N1 moiety becomes challenged. For pistol ribozymes we found that γ-catalysis is subordinate in overall catalysis, made up by two other catalytic factors (α and δ). Our approach allows scaling of the different catalytic contributions (α, ß, γ, δ) with unprecedented precision and paves the way for a thorough mechanistic understanding of nucleolytic ribozymes with active site guanines.


Assuntos
RNA Catalítico , Carbono , Catálise , Guanina , Guanosina , Conformação de Ácido Nucleico , Fosfatos , RNA Catalítico/metabolismo
19.
Beilstein J Org Chem ; 18: 1617-1624, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36530531

RESUMO

Imidazopyridines and pyrrolopyrimidines are an important class of compounds in medicinal chemistry. They can also be considered as deaza-modified purine nucleobases, and as such have attracted a lot of interest recently in the context of RNA atomic mutagenesis. In particular, for 1-deazaguanine (c1G base), a significant increase in demand is apparent. Synthetic access is challenging and the few reports found in the literature suffer from the requirement of hazardous intermediates and harsh reaction conditions. Here, we report a new six-step synthesis for c1G base, starting from 6-iodo-1-deazapurine. The key transformations are copper catalyzed C-O-bond formation followed by site-specific nitration. A further strength of our route is divergency, additionally enabling the synthesis of 1-deazahypoxanthine (c1I base).

20.
Nucleic Acids Res ; 47(14): 7223-7234, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31276590

RESUMO

The catalytic strategies of small self-cleaving ribozymes often involve interactions between nucleobases and the ribonucleic acid (RNA) backbone. Here we show that multiply protonated, gaseous RNA has an intrinsic preference for the formation of ionic hydrogen bonds between adenine protonated at N3 and the phosphodiester backbone moiety on its 5'-side that facilitates preferential phosphodiester backbone bond cleavage upon vibrational excitation by low-energy collisionally activated dissociation. Removal of the basic N3 site by deaza-modification of adenine was found to abrogate preferential phosphodiester backbone bond cleavage. No such effects were observed for N1 or N7 of adenine. Importantly, we found that the pH of the solution used for generation of the multiply protonated, gaseous RNA ions by electrospray ionization affects phosphodiester backbone bond cleavage next to adenine, which implies that the protonation patterns in solution are at least in part preserved during and after transfer into the gas phase. Our study suggests that interactions between protonated adenine and phosphodiester moieties of RNA may play a more important mechanistic role in biological processes than considered until now.


Assuntos
Adenina/química , Prótons , Clivagem do RNA , RNA/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Modelos Químicos , Estrutura Molecular , Conformação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA