Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Neurobiol Dis ; 132: 104544, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31351171

RESUMO

Metabolic interventions including special diets and supplements are commonly used in Autism Spectrum Disorder (ASD). Yet little is known about how these interventions, typically initiated by caregivers, may affect metabolic function or the core symptoms of ASD. This review examines possible direct and indirect roles for metabolism in the core symptoms of ASD as well as evidence for metabolic dysfunction and nutritional deficiencies. We also discuss some of the most popular diets and supplements used in our patient population and suggest strategies for discussing the utility of these interventions with patients, families, and caregivers.


Assuntos
Transtorno do Espectro Autista/dietoterapia , Transtorno do Espectro Autista/metabolismo , Estado Nutricional/fisiologia , Apoio Nutricional/métodos , Transtorno do Espectro Autista/epidemiologia , Dieta Livre de Glúten/métodos , Dieta Livre de Glúten/tendências , Dieta Cetogênica/métodos , Dieta Cetogênica/tendências , Suplementos Nutricionais , Humanos , Doenças Metabólicas/dietoterapia , Doenças Metabólicas/epidemiologia , Doenças Metabólicas/metabolismo , Apoio Nutricional/tendências , Vitaminas/administração & dosagem
2.
medRxiv ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39228695

RESUMO

Background & Objectives: Many genes have been identified in autism spectrum disorder (ASD). Yet little is known about how many adults with ASD receive recommended genetic testing and their outcomes. We investigated the percentage of adults with ASD who received genetic testing using recommended methods in our ASD specialty clinic and the percentage with positive findings. Methods: Potentially eligible adults were identified through search of our health system data repository and ASD diagnoses confirmed using review of relevant medical records by consensus of psychiatrists specializing in ASD. Patients were included (N=630) who had at least one visit with a qualifying clinician between 5/1/2010 and 12/15/2020 and demographic data available. Data were collected through manual retrospective review of the electronic health record. Results: Only 41% of the adults with ASD (261/630) had a history of genetic testing documented in the medical record. Genetic testing was declined by patients or families for 11% (72) of records and not recorded in 47% (297). Mean (SD; range) age for the 261 adults with testing documented was 28.5 (5.3; 22-58) years. Sixty-seven (26%) were identified as female, 14 (6%) as Asian, 8 (3%) as Black or African American, 226 (89%) as White, 6 (2%) as other race, and 2 (1%) as Hispanic. 189 (73%) had intellectual disability. Ninety-one percent (236) had the genetic testing method recorded. Only 54% (95% CI: 46%, 61%) of patients had testing using a recommended method (chromosomal array, autism/intellectual disability sequencing panel, or exome sequencing). Few adults had received testing with sequencing technologies. A genetic cause of ASD was found in 28% (95% CI: 19%, 39%) of the 121 adults with results from ASD-related genetic testing recorded. Conclusions: Genetic testing can offer clinical and research insights. Yet it is underutilized in this population of adults with ASD. Nearly half of the adults in our sample lacked documentation of genetic testing. Thus, the percentage of adults with confirmed ASD who had any recommended genetic testing may be even lower than reported. Adults with ASD may benefit from having their genetic testing history reviewed in the clinic and the latest genetic testing performed.

3.
bioRxiv ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38370637

RESUMO

Microelectrode array (MEA) recordings are commonly used to compare firing and burst rates in neuronal cultures. MEA recordings can also reveal microscale functional connectivity, topology, and network dynamics-patterns seen in brain networks across spatial scales. Network topology is frequently characterized in neuroimaging with graph theoretical metrics. However, few computational tools exist for analyzing microscale functional brain networks from MEA recordings. Here, we present a MATLAB MEA network analysis pipeline (MEA-NAP) for raw voltage time-series acquired from single- or multi-well MEAs. Applications to 3D human cerebral organoids or 2D human-derived or murine cultures reveal differences in network development, including topology, node cartography, and dimensionality. MEA-NAP incorporates multi-unit template-based spike detection, probabilistic thresholding for determining significant functional connections, and normalization techniques for comparing networks. MEA-NAP can identify network-level effects of pharmacologic perturbation and/or disease-causing mutations and, thus, can provide a translational platform for revealing mechanistic insights and screening new therapeutic approaches.

4.
Nat Neurosci ; 24(11): 1542-1554, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34675437

RESUMO

Amyotrophic lateral sclerosis overlapping with frontotemporal dementia (ALS/FTD) is a fatal and currently untreatable disease characterized by rapid cognitive decline and paralysis. Elucidating initial cellular pathologies is central to therapeutic target development, but obtaining samples from presymptomatic patients is not feasible. Here, we report the development of a cerebral organoid slice model derived from human induced pluripotent stem cells (iPSCs) that recapitulates mature cortical architecture and displays early molecular pathology of C9ORF72 ALS/FTD. Using a combination of single-cell RNA sequencing and biological assays, we reveal distinct transcriptional, proteostasis and DNA repair disturbances in astroglia and neurons. We show that astroglia display increased levels of the autophagy signaling protein P62 and that deep layer neurons accumulate dipeptide repeat protein poly(GA), DNA damage and undergo nuclear pyknosis that could be pharmacologically rescued by GSK2606414. Thus, patient-specific iPSC-derived cortical organoid slice cultures are a reproducible translational platform to investigate preclinical ALS/FTD mechanisms as well as novel therapeutic approaches.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Astrócitos/patologia , Demência Frontotemporal/patologia , Neurônios/patologia , Organoides/patologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Astrócitos/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Neurônios/metabolismo , Técnicas de Cultura de Órgãos/métodos , Organoides/metabolismo
5.
Cereb Cortex ; 19(12): 2959-69, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19363149

RESUMO

Spike timing-dependent plasticity (STDP) is a strong candidate for an N-methyl-D-aspartate (NMDA) receptor-dependent form of synaptic plasticity that could underlie the development of receptive field properties in sensory neocortices. Whilst induction of timing-dependent long-term potentiation (t-LTP) requires postsynaptic NMDA receptors, timing-dependent long-term depression (t-LTD) requires the activation of presynaptic NMDA receptors at layer 4-to-layer 2/3 synapses in barrel cortex. Here we investigated the developmental profile of t-LTD at layer 4-to-layer 2/3 synapses of mouse barrel cortex and studied their NMDA receptor subunit dependence. Timing-dependent LTD emerged in the first postnatal week, was present during the second week and disappeared in the adult, whereas t-LTP persisted in adulthood. An antagonist at GluN2C/D subunit-containing NMDA receptors blocked t-LTD but not t-LTP. Conversely, a GluN2A subunit-preferring antagonist blocked t-LTP but not t-LTD. The GluN2C/D subunit requirement for t-LTD appears to be synapse specific, as GluN2C/D antagonists did not block t-LTD at horizontal cross-columnar layer 2/3-to-layer 2/3 synapses, which was blocked by a GluN2B antagonist instead. These data demonstrate an NMDA receptor subunit-dependent double dissociation of t-LTD and t-LTP mechanisms at layer 4-to-layer 2/3 synapses, and suggest that t-LTD is mediated by distinct molecular mechanisms at different synapses on the same postsynaptic neuron.


Assuntos
Potenciais de Ação/fisiologia , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Córtex Somatossensorial/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL
6.
Neuron ; 103(4): 563-581, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31437453

RESUMO

Spike-timing-dependent synaptic plasticity (STDP) is a leading cellular model for behavioral learning and memory with rich computational properties. However, the relationship between the millisecond-precision spike timing required for STDP and the much slower timescales of behavioral learning is not well understood. Neuromodulation offers an attractive mechanism to connect these different timescales, and there is now strong experimental evidence that STDP is under neuromodulatory control by acetylcholine, monoamines, and other signaling molecules. Here, we review neuromodulation of STDP, the underlying mechanisms, functional implications, and possible involvement in brain disorders.


Assuntos
Plasticidade Neuronal/fisiologia , Neurotransmissores/fisiologia , Potenciais de Ação , Animais , Astrócitos/fisiologia , Comportamento/fisiologia , Encefalopatias/tratamento farmacológico , Encefalopatias/fisiopatologia , Mapeamento Encefálico , Humanos , Aprendizagem/fisiologia , Consolidação da Memória/fisiologia , Modelos Neurológicos , Terapia de Alvo Molecular , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/fisiopatologia , Transtornos do Neurodesenvolvimento/tratamento farmacológico , Transtornos do Neurodesenvolvimento/fisiopatologia , Neurônios/fisiologia , Transtorno Obsessivo-Compulsivo/tratamento farmacológico , Transtorno Obsessivo-Compulsivo/fisiopatologia , Terminações Pré-Sinápticas/fisiologia , Receptores de Neurotransmissores/fisiologia , Reforço Psicológico , Transdução de Sinais/fisiologia , Especificidade da Espécie , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/fisiopatologia , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Fatores de Tempo
7.
Nat Neurosci ; 22(4): 669-679, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30886407

RESUMO

Neural organoids have the potential to improve our understanding of human brain development and neurological disorders. However, it remains to be seen whether these tissues can model circuit formation with functional neuronal output. Here we have adapted air-liquid interface culture to cerebral organoids, leading to improved neuronal survival and axon outgrowth. The resulting thick axon tracts display various morphologies, including long-range projection within and away from the organoid, growth-cone turning, and decussation. Single-cell RNA sequencing reveals various cortical neuronal identities, and retrograde tracing demonstrates tract morphologies that match proper molecular identities. These cultures exhibit active neuronal networks, and subcortical projecting tracts can innervate mouse spinal cord explants and evoke contractions of adjacent muscle in a manner dependent on intact organoid-derived innervating tracts. Overall, these results reveal a remarkable self-organization of corticofugal and callosal tracts with a functional output, providing new opportunities to examine relevant aspects of human CNS development and disease.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Neurônios/fisiologia , Organoides/crescimento & desenvolvimento , Técnicas de Cultura de Tecidos/métodos , Axônios/fisiologia , Sobrevivência Celular , Córtex Cerebral/citologia , Feminino , Humanos , Masculino , Vias Neurais/citologia , Vias Neurais/fisiologia , Neurônios/citologia , Organoides/citologia , Células-Tronco Pluripotentes/fisiologia
8.
Biol Psychiatry ; 79(9): 746-754, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26185009

RESUMO

BACKGROUND: Early postnatal experience shapes N-methyl-D-aspartate receptor (NMDAR) subunit composition and kinetics at excitatory synapses onto pyramidal cells; however, little is known about NMDAR maturation onto inhibitory interneurons. METHODS: We combined whole-cell patch clamp recordings (n = 440) of NMDAR-mediated currents from layer-4-to-layer-2/3 synapses onto pyramidal and green fluorescent protein labeled parvalbumin-positive (PV) interneurons in visual cortex at three developmental ages (15, 30, and 45 postnatal days) with array tomography three-dimensional reconstructions of NMDAR subunits GluN2A- and GluN2B-positive synapses onto PV cells. RESULTS: We show that the trajectory of the NMDAR subunit switch is slower in PV interneurons than in excitatory pyramidal cells in visual cortex. Notably, this differential time course is reversed in the absence of methyl-CpG-binding protein, MECP2, the molecular basis for cognitive decline in Rett syndrome and some cases of autism. Additional genetic reduction of GluN2A subunits, which prevents regression of vision in Mecp2-knockout mice, specifically rescues the accelerated NMDAR maturation in PV cells. CONCLUSIONS: We demonstrate 1) the time course of NMDAR maturation is cell-type specific, and 2) a new cell-type specific role for Mecp2 in the development of NMDAR subunit composition. Reducing GluN2A expression in Mecp2-knockout mice, which prevents the decline in visual cortical function, also prevents the premature NMDAR maturation in PV cells. Thus, circuit-based therapies targeting NMDAR subunit composition on PV cells may provide novel treatments for Rett syndrome.


Assuntos
Interneurônios/fisiologia , Proteína 2 de Ligação a Metil-CpG/fisiologia , Células Piramidais/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Córtex Visual/fisiologia , Animais , Feminino , Interneurônios/citologia , Interneurônios/metabolismo , Masculino , Potenciais da Membrana , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Parvalbuminas/metabolismo , Subunidades Proteicas/metabolismo , Subunidades Proteicas/fisiologia , Células Piramidais/citologia , Células Piramidais/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Sinapses/fisiologia , Córtex Visual/citologia , Córtex Visual/metabolismo
9.
PLoS One ; 11(2): e0148129, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26829109

RESUMO

GluN2A is the most abundant of the GluN2 NMDA receptor subunits in the mammalian CNS. Physiological and genetic evidence implicate GluN2A-containing receptors in susceptibility to autism, schizophrenia, childhood epilepsy and neurodevelopmental disorders such as Rett Syndrome. However, GluN2A-selective pharmacological probes to explore the therapeutic potential of targeting these receptors have been lacking. Here we disclose a novel series of pyrazine-containing GluN2A antagonists exemplified by MPX-004 (5-(((3-chloro-4-fluorophenyl)sulfonamido)methyl)-N-((2-methylthiazol-5-yl)methyl)pyrazine-2-carboxamide) and MPX-007 (5-(((3-fluoro-4-fluorophenyl)sulfonamido)methyl)-N-((2-methylthiazol-5-yl)methyl)methylpyrazine-2-carboxamide). MPX-004 and MPX-007 inhibit GluN2A-containing NMDA receptors expressed in HEK cells with IC50s of 79 nM and 27 nM, respectively. In contrast, at concentrations that completely inhibited GluN2A activity these compounds have no inhibitory effect on GluN2B or GluN2D receptor-mediated responses in similar HEK cell-based assays. Potency and selectivity were confirmed in electrophysiology assays in Xenopus oocytes expressing GluN2A-D receptor subtypes. Maximal concentrations of MPX-004 and MPX-007 inhibited ~30% of the whole-cell current in rat pyramidal neurons in primary culture and MPX-004 inhibited ~60% of the total NMDA receptor-mediated EPSP in rat hippocampal slices. GluN2A-selectivity at native receptors was confirmed by the finding that MPX-004 had no inhibitory effect on NMDA receptor mediated synaptic currents in cortical slices from GRIN2A knock out mice. Thus, MPX-004 and MPX-007 offer highly selective pharmacological tools to probe GluN2A physiology and involvement in neuropsychiatric and developmental disorders.


Assuntos
Subunidades Proteicas/metabolismo , Pirazinas/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Sulfonamidas/farmacologia , Animais , Região CA1 Hipocampal/citologia , Cálcio/metabolismo , Células Cultivadas , Cães , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Ácido Glutâmico/metabolismo , Glicina/metabolismo , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Células Madin Darby de Rim Canino , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oócitos/metabolismo , Pirazinas/química , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Relação Estrutura-Atividade , Sulfonamidas/química , Xenopus
11.
Proc Natl Acad Sci U S A ; 101(43): 15518-23, 2004 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-15492224

RESUMO

A fundamental problem in the study of cortical development is the extent to which the formation and refinement of synaptic circuitry depends upon sensory experience. The barrel cortex is a useful model system to study experience-dependent cortical development because there is a simple mapping of individual whiskers to the corresponding barrel columns in the cortex. We investigated experience-dependent and -independent changes in glutamatergic synaptic transmission in the barrel cortex during the second postnatal week by comparing synaptic responses from whisker-intact mice at postnatal day (P) 7 and P14 with those from whisker-deprived mice at P14. alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA)-receptor-mediated excitatory synaptic responses were recorded from layer 2/3 pyramidal cells in vitro during voltage-clamp in response to stimulation in layer 4. We observed that the ratio of synaptic AMPA- to NMDA-receptor-mediated current (A/N ratio) increased with developmental age. The development of the A/N ratio was unchanged by deprivation of the whisker input throughout the second postnatal week. In contrast, the NMDA-receptor current decay and sensitivity to the NMDA receptor 2B subunit-selective antagonist ifenprodil was affected strongly by such deprivation. These results demonstrate a concurrent dissociation between sensory experience-dependent and -independent changes of glutamatergic transmission in the barrel cortex during the second postnatal week. Furthermore, they suggest that the development of subunit composition of synaptic receptors is dependent on sensory experience, whereas maturation of the synaptic A/N ratio is independent of such experience. Thus, different components of synaptic development may be governed by different developmental rules.


Assuntos
Córtex Somatossensorial/fisiologia , Transmissão Sináptica/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Receptores de N-Metil-D-Aspartato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA