RESUMO
Coronaviruses are pathogens of pandemic potential. Middle East respiratory syndrome coronavirus (MERS-CoV) causes a zoonotic respiratory disease of global public health concern, and dromedary camels are the only proven source of zoonotic infection. More than 70% of MERS-CoV-infected dromedaries are found in East, North, and West Africa, but zoonotic MERS disease is only reported from the Arabian Peninsula. We compared viral replication competence of clade A and B viruses from the Arabian Peninsula with genetically diverse clade C viruses found in East (Egypt, Kenya, and Ethiopia), North (Morocco), and West (Nigeria and Burkina Faso) Africa. Viruses from Africa had lower replication competence in ex vivo cultures of the human lung and in lungs of experimentally infected human-DPP4 (hDPP4) knockin mice. We used lentivirus pseudotypes expressing MERS-CoV spike from Saudi Arabian clade A prototype strain (EMC) or African clade C1.1 viruses and demonstrated that clade C1.1 spike was associated with reduced virus entry into the respiratory epithelial cell line Calu-3. Isogenic EMC viruses with spike protein from EMC or clade C1.1 generated by reverse genetics showed that the clade C1.1 spike was associated with reduced virus replication competence in Calu-3 cells in vitro, in ex vivo human bronchus, and in lungs of hDPP4 knockin mice in vivo. These findings may explain why zoonotic MERS disease has not been reported from Africa so far, despite exposure to and infection with MERS-CoV.
Assuntos
Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Zoonoses/virologia , África , Animais , Arábia , Linhagem Celular , Dipeptidil Peptidase 4/metabolismo , Técnicas de Introdução de Genes , Humanos , Cinética , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Fenótipo , Filogenia , Glicoproteína da Espícula de Coronavírus/metabolismo , Replicação Viral/fisiologiaRESUMO
Middle East respiratory syndrome coronavirus (MERS-CoV) causes a zoonotic respiratory disease of global public health concern, and dromedary camels are the only proven source of zoonotic infection. Although MERS-CoV infection is ubiquitous in dromedaries across Africa as well as in the Arabian Peninsula, zoonotic disease appears confined to the Arabian Peninsula. MERS-CoVs from Africa have hitherto been poorly studied. We genetically and phenotypically characterized MERS-CoV from dromedaries sampled in Morocco, Burkina Faso, Nigeria, and Ethiopia. Viruses from Africa (clade C) are phylogenetically distinct from contemporary viruses from the Arabian Peninsula (clades A and B) but remain antigenically similar in microneutralization tests. Viruses from West (Nigeria, Burkina Faso) and North (Morocco) Africa form a subclade, C1, that shares clade-defining genetic signatures including deletions in the accessory gene ORF4b Compared with human and camel MERS-CoV from Saudi Arabia, virus isolates from Burkina Faso (BF785) and Nigeria (Nig1657) had lower virus replication competence in Calu-3 cells and in ex vivo cultures of human bronchus and lung. BF785 replicated to lower titer in lungs of human DPP4-transduced mice. A reverse genetics-derived recombinant MERS-CoV (EMC) lacking ORF4b elicited higher type I and III IFN responses than the isogenic EMC virus in Calu-3 cells. However, ORF4b deletions may not be the major determinant of the reduced replication competence of BF785 and Nig1657. Genetic and phenotypic differences in West African viruses may be relevant to zoonotic potential. There is an urgent need for studies of MERS-CoV at the animal-human interface.
Assuntos
Camelus/virologia , Variação Genética , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , África , Animais , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Feminino , Humanos , Pulmão/virologia , Camundongos Endogâmicos C57BL , Filogenia , Replicação Viral , Zoonoses/virologiaRESUMO
Genetic recombination has frequently been observed in coronaviruses. Here, we sequenced multiple complete genomes of dromedary camel coronavirus HKU23 (DcCoV-HKU23) from Nigeria, Morocco, and Ethiopia and identified several genomic positions indicative of cross-species virus recombination events among other betacoronaviruses of the subgenus Embecovirus (clade A beta-CoVs). Recombinant fragments of a rabbit coronavirus (RbCoV-HKU14) were identified at the hemagglutinin esterase gene position. Homolog fragments of a rodent CoV were also observed at 8.9-kDa open reading frame 4a at the 3' end of the spike gene. The patterns of recombination differed geographically across the African region, highlighting a mosaic structure of DcCoV-HKU23 genomes circulating in dromedaries. Our results highlighted active recombination of coronaviruses circulating in dromedaries and are also relevant to the emergence and evolution of other betacoronaviruses, including Middle East respiratory syndrome coronavirus (MERS-CoV).IMPORTANCE Genetic recombination is often demonstrated in coronaviruses and can result in host range expansion or alteration in tissue tropism. Here, we showed interspecies events of recombination of an endemic dromedary camel coronavirus, HKU23, with other clade A betacoronaviruses. Our results supported the possibility that the zoonotic pathogen MERS-CoV, which also cocirculates in the same camel species, may have undergone similar recombination events facilitating its emergence or may do so in its future evolution.
Assuntos
Betacoronavirus/genética , Camelus/virologia , Infecções por Coronavirus/virologia , Coronavirus/genética , Variação Genética , Recombinação Genética , Animais , Anticorpos Neutralizantes , Betacoronavirus/classificação , Coronavirus/classificação , Etiópia , Evolução Molecular , Genoma Viral , Genótipo , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Marrocos , Nigéria , Fases de Leitura Aberta , Filogenia , Coelhos , Zoonoses/virologiaRESUMO
Understanding Middle East respiratory syndrome coronavirus (MERS-CoV) transmission in dromedary camels is important, as they consitute a source of zoonotic infection to humans. To identify risk factors for MERS-CoV infection in camels bred in diverse conditions in Burkina Faso, Ethiopia and Morocco, blood samples and nasal swabs were sampled in February-March 2015. A relatively high MERS-CoV RNA rate was detected in Ethiopia (up to 15.7%; 95% confidence interval (CI): 8.2-28.0), followed by Burkina Faso (up to 12.2%; 95% CI: 7-20.4) and Morocco (up to 7.6%; 95% CI: 1.9-26.1). The RNA detection rate was higher in camels bred for milk or meat than in camels for transport (p = 0.01) as well as in younger camels (p = 0.06). High seropositivity rates (up to 100%; 95% CI: 100-100 and 99.4%; 95% CI: 95.4-99.9) were found in Morocco and Ethiopia, followed by Burkina Faso (up to 84.6%; 95% CI: 77.2-89.9). Seropositivity rates were higher in large/medium herds (≥51 camels) than small herds (p = 0.061), in camels raised for meat or milk than for transport (p = 0.01), and in nomadic or sedentary herds than in herds with a mix of these lifestyles (p < 0.005).
Assuntos
Camelus/virologia , Infecções por Coronavirus/veterinária , Surtos de Doenças/veterinária , Reservatórios de Doenças/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Zoonoses/diagnóstico , Animais , Burkina Faso , Infecções por Coronavirus/sangue , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Etiópia , Humanos , Dados de Sequência Molecular , Marrocos , RNA Viral/análise , Fatores de Risco , Análise de Sequência de RNA , Zoonoses/epidemiologia , Zoonoses/virologiaRESUMO
At a human/livestock/wildlife interface, Escherichia coli populations were used to assess the risk of bacterial and antibiotic resistance dissemination between hosts. We used phenotypic and genotypic characterization techniques to describe the structure and the level of antibiotic resistance of E. coli commensal populations and the resistant Enterobacteriaceae carriage of sympatric African buffalo (Syncerus caffer caffer) and cattle populations characterized by their contact patterns in the southern part of Hwange ecosystem in Zimbabwe. Our results (i) confirmed our assumption that buffalo and cattle share similar phylogroup profiles, dominated by B1 (44.5%) and E (29.0%) phylogroups, with some variability in A phylogroup presence (from 1.9 to 12%); (ii) identified a significant gradient of antibiotic resistance from isolated buffalo to buffalo in contact with cattle and cattle populations expressed as the Murray score among Enterobacteriaceae (0.146, 0.258, and 0.340, respectively) and as the presence of tetracycline-, trimethoprim-, and amoxicillin-resistant subdominant E. coli strains (0, 5.7, and 38%, respectively); (iii) evidenced the dissemination of tetracycline, trimethoprim, and amoxicillin resistance genes (tet, dfrA, and blaTEM-1) in 26 isolated subdominant E. coli strains between nearby buffalo and cattle populations, that led us (iv) to hypothesize the role of the human/animal interface in the dissemination of genetic material from human to cattle and toward wildlife. The study of antibiotic resistance dissemination in multihost systems and at anthropized/natural interface is necessary to better understand and mitigate its multiple threats. These results also contribute to attempts aiming at using E. coli as a tool for the identification of pathogen transmission pathway in multihost systems.
Assuntos
Farmacorresistência Bacteriana , Infecções por Escherichia coli/veterinária , Escherichia coli/classificação , Escherichia coli/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Bovinos , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Variação Genética , Genótipo , Humanos , Filogenia , Zimbábue/epidemiologiaRESUMO
Middle East respiratory syndrome coronavirus (MERS-CoV) is enzootic in dromedary camels and causes zoonotic infection and disease in humans. Although over 80% of the global population of infected dromedary camels are found in Africa, zoonotic disease had only been reported in the Arabia Peninsula and travel-associated disease has been reported elsewhere. In this study, genetic diversity and molecular epidemiology of MERS-CoV in dromedary camels in Ethiopia were investigated during 2017-2020. Of 1766 nasal swab samples collected, 61 (3.5%) were detected positive for MERS-CoV RNA. Of 484 turbinate swab samples collected, 10 (2.1%) were detected positive for MERS-CoV RNA. Twenty-five whole genome sequences were obtained from these MERS-CoV positive samples. Phylogenetically, these Ethiopian camel-originated MERS-CoV belonged to clade C2, clustering with other East African camel strains. Virus sequences from camel herds clustered geographically while in an abattoir, two distinct phylogenetic clusters of MERS-CoVs were observed in two sequential sampling collections, which indicates the greater genetic diversity of MERS-CoV in abattoirs. In contrast to clade A and B viruses from the Arabian Peninsula, clade C camel-originated MERS-CoV from Ethiopia had various nucleotide insertions and deletions in non-structural gene nsp3, accessory genes ORF3 and ORF5 and structural gene N. This study demonstrates the genetic instability of MERS-CoV in dromedaries in East Africa, which indicates that the virus is still actively adapting to its camel host. The impact of the observed nucleotide insertions and deletions on virus evolution, viral fitness, and zoonotic potential deserves further study.
Assuntos
Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Camelus , Filogenia , Etiópia/epidemiologia , Epidemiologia Molecular , Viagem , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Zoonoses/epidemiologia , Variação Genética , RNARESUMO
Many emerging infectious diseases originate from wild animals, so there is a profound need for surveillance and monitoring of their pathogens. However, the practical difficulty of sample acquisition from wild animals tends to limit the feasibility and effectiveness of such surveys. Xenosurveillance, using blood-feeding invertebrates to obtain tissue samples from wild animals and then detect their pathogens, is a promising method to do so. Here, we describe the use of tsetse fly blood meals to determine (directly through molecular diagnostic and indirectly through serology), the diversity of circulating blood-borne pathogens (including bacteria, viruses and protozoa) in a natural mammalian community of Tanzania. Molecular analyses of captured tsetse flies (182 pools of flies totalizing 1728 flies) revealed that the blood meals obtained came from 18 different vertebrate species including 16 non-human mammals, representing approximately 25% of the large mammal species present in the study area. Molecular diagnostic demonstrated the presence of different protozoa parasites and bacteria of medical and/or veterinary interest. None of the six virus species searched for by molecular methods were detected but an ELISA test detected antibodies against African swine fever virus among warthogs, indicating that the virus had been circulating in the area. Sampling of blood-feeding insects represents an efficient and practical approach to tracking a diversity of pathogens from multiple mammalian species, directly through molecular diagnostic or indirectly through serology, which could readily expand and enhance our understanding of the ecology and evolution of infectious agents and their interactions with their hosts in wild animal communities.
Assuntos
Vírus da Febre Suína Africana , Dípteros , Moscas Tsé-Tsé , Vírus , Animais , Animais Selvagens , Patógenos Transmitidos pelo Sangue , Mamíferos , Refeições , SuínosAssuntos
Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Camelus/virologia , Infecções por Coronavirus/transmissão , Feminino , Geografia , Humanos , Cazaquistão/epidemiologia , Coronavírus da Síndrome Respiratória do Oriente Médio/isolamento & purificação , Estudos SoroepidemiológicosRESUMO
The maintenance of infectious diseases requires a sufficient number of susceptible hosts. Host culling is a potential control strategy for animal diseases. However, the reduction in biodiversity and increasing public concerns regarding the involved ethical issues have progressively challenged the use of wildlife culling. Here, we assess the potential of wildlife culling as an epidemiologically sound management tool, by examining the host ecology, pathogen characteristics, eco-sociological contexts, and field work constraints. We also discuss alternative solutions and make recommendations for the appropriate implementation of culling for disease control.
Assuntos
Abate de Animais , Animais Selvagens , Controle de Doenças Transmissíveis/métodos , Doenças Transmissíveis/veterinária , Abate de Animais/métodos , Animais , Conservação dos Recursos Naturais/métodos , Ecologia , Medição de RiscoRESUMO
Fission-fusion dynamics allow animals to manage costs and benefits of group living by adjusting group size. The degree of intraspecific variation in fission-fusion dynamics across the geographical range is poorly known. During 2008-2016, 38 adult female Cape buffalo were equipped with GPS collars in three populations located in different protected areas (Gonarezhou National Park and Hwange National Park, Zimbabwe; Kruger National Park, South Africa) to investigate the patterns and environmental drivers of fission-fusion dynamics among populations. We estimated home range overlap and fission and fusion events between Cape buffalo dyads. We investigated the temporal dynamics of both events at daily and seasonal scales and examined the influence of habitat and distance to water on event location. Fission-fusion dynamics were generally consistent across populations: Fission and fusion periods lasted on average between less than one day and three days. However, we found seasonal differences in the underlying patterns of fission and fusion, which point out the likely influence of resource availability and distribution in time on group dynamics: During the wet season, Cape buffalo split and associated more frequently and were in the same or in a different subgroup for shorter periods. Cape buffalo subgroups were more likely to merge than to split in open areas located near water, but overall vegetation and distance to water were very poor predictors of where fission and fusion events occurred. This study is one of the first to quantify fission-fusion dynamics in a single species across several populations with a common methodology, thus robustly questioning the behavioral flexibility of fission-fusion dynamics among environments.
RESUMO
Humans live increasingly in the proximity of natural areas, leading to increased interactions between people, their livestock and wildlife. AIM: We explored the role of these interactions in the risk of disease transmission (foot-and-mouth disease [FMD]) between cattle and the African buffalo (the maintenance host) and how a top predator, the lion, may modulate these interactions. LOCATION: The interface of Hwange National Park (HNP) and surrounding communal lands, Zimbabwe. METHOD: We combined a longitudinal serological cattle survey for FMD, GPS-collar data and cattle owners' interviews during four seasons in 2010-2011. RESULTS: Overall FMD incidence in cattle was low, but showed a peak during the rainy season. The incidence dynamic was significantly explained by cattle incursion into the protected area (i.e., buffer zone of 3 km inside HNP) and not by contacts with buffalo or contacts among cattle. These results suggest that FMD virus either survives in the environment or is transmitted by other ungulate groups or species. The analysis of incursion frequency in the buffer suggests that (1) buffalo and cattle are avoiding each other up to 2 months after one species track and that (2) lions make frequent incursions in the buffer few days to few weeks after buffalo had used it, whereas buffalo did not use areas occupied by lions. Lions could thus reduce the spatio-temporal overlap between cattle and buffalo in the interface, which could contribute to the low level of FMD incidence. MAIN CONCLUSIONS: During the rainy season, traditional herding practices push cattle away from growing crops near villages into the HNP but not during the dry season, suggesting that cattle owners may decide to rely on lower quality resources in the communal land in the dry season to avoid the risks of infection and/or predation in the HNP.This study highlights the complex dynamics that operates at human/livestock/wildlife interfaces.
RESUMO
Nearly 4 years after the first report of the emergence of Middle-East respiratory syndrome Coronavirus (MERS-CoV) and nearly 1800 human cases later, the ecology of MERS-CoV, its epidemiology, and more than risk factors of MERS-CoV transmission between camels are poorly understood. Knowledge about the pathways and mechanisms of transmission from animals to humans is limited; as of yet, transmission risks have not been quantified. Moreover the divergent sanitary situations and exposures to animals among populations in the Arabian Peninsula, where human primary cases appear to dominate, vs. other regions in the Middle East and Africa, with no reported human clinical cases and where the virus has been detected only in dromedaries, represents huge scientific and health challenges. Here, we have used expert-opinion elicitation in order to obtain ideas on relative importance of MERS-CoV risk factors and estimates of transmission risks from various types of contact between humans and dromedaries. Fourteen experts with diverse and extensive experience in MERS-CoV relevant fields were enrolled and completed an online questionnaire that examined pathways based on several scenarios, e.g., camels-camels, camels-human, bats/other species to camels/humans, and the role of diverse biological substances (milk, urine, etc.) and potential fomites. Experts believed that dromedary camels play the largest role in MERS-CoV infection of other dromedaries; however, they also indicated a significant influence of the season (i.e. calving or weaning periods) on transmission risk. All experts thought that MERS-CoV-infected dromedaries and asymptomatic humans play the most important role in infection of humans, with bats and other species presenting a possible, but yet undefined, risk. Direct and indirect contact of humans with dromedary camels were identified as the most risky types of contact, when compared to consumption of various camel products, with estimated "most likely" incidence risks of at least 22 and 13% for direct and indirect contact, respectively. The results of our study are consistent with available, yet very limited, published data regarding the potential pathways of transmission of MERS-CoV at the animal-human interface. These results identify key knowledge gaps and highlight the need for more comprehensive, yet focused research to be conducted to better understand transmission between dromedaries and humans.
RESUMO
The sharing of habitat by wild and domestic animals may result in pathogen transmission, notably via ectoparasite vectors such as ticks. Interfaces between protected and communal lands constitute sharp transitions between areas occupied by host communities that are extremely contrasted in terms of composition, diversity and density. Empirical characterizations of tick communities and of their vertebrate hosts are strongly relevant for understanding the mechanisms leading to disease transmission between wild and domestic animals. In the present study we aimed at depicting the pattern of spatial variation in the density of immature ticks at such an interface located in Zimbabwe. At the end of the 2011 rainy season, we applied a hierarchical repeated protocol to collect ticks. We used the drag-sampling method in the vegetation surrounding water pans used by ungulates in 3 distinct landscape compartments (i.e. national park, mixed compartment and communal lands) characterized by a differential use by wild and domestic hosts. We combined generalized linear mixed models with site occupancy models to (1) assess tick aggregation levels at different spatial scales, (2) identify and disentangle factors which influence the density and probability of tick detection, and (3) compare robust estimations of tick densities among the landscape compartments. Ticks belonging to the Amblyomma and Riphicephalus genuses were found to be the most abundant. At small scale, ticks were more often detected in the afternoon and were more abundant close to water pans for Amblyomma and Riphicephalus genuses. Riphicephalus spp. density was also higher in grassland and bushland vegetation types as compared to woodland vegetation type. At large scale, for the three detected genuses, density was much higher near water pans located in the communal lands as compared to the national park and mixed compartment. Given that host community's diversity is much lower in the communal areas than in the two other landscape compartments, these results are compatible with a dilution effect but not sufficient to demonstrate this effect without additional studies. Up to date, it is the first utilization of these rigorous sampling and statistical modelling methodologies to estimate tick density in African ecosystem simultaneously at large and small scales.
Assuntos
Filogeografia , Carrapatos/classificação , Carrapatos/crescimento & desenvolvimento , Animais , Ecossistema , Análise Espacial , ZimbábueRESUMO
A growing body of evidence indicates that odors are used in individual, sexual, and species recognition in vertebrates, and may be reliable signals of quality and compatibility. Petrels are seabirds that exhibit an acute sense of smell. During the breeding period, many species of petrels live in dense colonies on small oceanic islands and form pairs that use individual underground burrows. Mates alternate between parental duties and foraging trips at sea. Returning from the ocean at night (to avoid bird predators), petrels must find their nest burrow. Antarctic prions, Pachyptila desolata, are thought to identify their nest by recognizing their partner's odor, suggesting the existence of an individual odor signature. We used gas chromatography and mass spectrometry to analyze extracts obtained from the feathers of 13 birds. The chemical profile of a single bird was more similar to itself, from year to year, than to that of any other bird. The profile contained up to a hundred volatile lipids, but the odor signature may be based on the presence or absence of a few specific compounds. Our results show that the odor signature in Antarctic prions is probably endogenous, suggesting that in some species of petrels it may broadcast compatibility and quality of potential mates.