Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Int J Mol Sci ; 21(17)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899318

RESUMO

The fabrication of 3D microstructures is under continuous development for engineering bone substitutes. Collagen/chitosan (Col/CT) blends emerge as biomaterials that meet the mechanical and biological requirements associated with bone tissue. In this work, we optimize the osteogenic effect of 3D microstructures by their functionalization with Col/CT blends with different blending ratios. The structures were fabricated by laser direct writing via two-photons polymerization of IP-L780 photopolymer. They comprised of hexagonal and ellipsoidal units 80 µm in length, 40 µm in width and 14 µm height, separated by 20 µm pillars. Structures' functionalization was achieved via dip coating in Col/CT blends with specific blending ratios. The osteogenic role of Col/CT functionalization of the 3D structures was confirmed by biological assays concerning the expression of alkaline phosphatase (ALP) and osteocalcin secretion as osteogenic markers and Alizarin Red (AR) as dye for mineral deposits in osteoblast-like cells seeded on the structures. The structures having ellipsoidal units showed the best results, but the trends were similar for both ellipsoidal and hexagonal units. The strongest osteogenic effect was obtained for Col/CT blending ratio of 20/80, as demonstrated by the highest ALP activity, osteocalcin secretion and AR staining intensity in the seeded cells compared to all the other samples.


Assuntos
Quitosana/química , Colágeno/química , Osteoblastos/citologia , Osteogênese , Polimerização , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Diferenciação Celular , Proliferação de Células , Humanos , Lasers , Fótons
2.
Appl Opt ; 57(28): 8460-8466, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30461802

RESUMO

A method to identify the azimuthal index of vortices and the radial parameter of axicons, as well as their associated spatial frequencies, is presented. These constructive parameters are employed to design parallel superimposed computer-generated holograms (PSCGHs). The diffraction patterns are studied in correspondence with the constructive parameters of the PSCGH. Another diffractive structure serving as identification key is inserted in the entire beam emerging from the PSCGH. The method identifies the parameters set in the first and second diffraction orders. The robustness and sensitivity of the method were checked against parameter mismatches. This method can be exploited as an authentication tool for holographic stamps incorporating PSCGHs.

3.
Appl Opt ; 53(21): 4691-9, 2014 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-25090205

RESUMO

Helical phase distributions used for optical information transfer increase its capacity by offering a characteristic spatial intensity arrangement for the diffracted beam. Here we propose the superposition between helical phase distribution with an axicon type. They form a composed object placed in the object arm to generate holographic masks. The diffracted patterns from these masks exhibit asymmetric shapes and peaks along the optical axis, with two kinds of spots, which contain independent or combined information from both phase distribution constructive parameters. To read these parameters based only on the diffraction patterns analysis, we generate the match reading masks (RMs) to be inserted in the optical path. In this proof-of-concept experiment, we demonstrate that one can sort constructive parameter values of each phase distribution, from both kinds of spots, using specific RMs.

4.
Heliyon ; 10(9): e29897, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38694030

RESUMO

Gliomas are the most common type of cerebral tumors; they occur with increasing incidence in the last decade and have a high rate of mortality. For efficient treatment, fast accurate diagnostic and grading of tumors are imperative. Presently, the grading of tumors is established by histopathological evaluation, which is a time-consuming procedure and relies on the pathologists' experience. Here we propose a supervised machine learning procedure for tumor grading which uses quantitative phase images of unstained tissue samples acquired by digital holographic microscopy. The algorithm is using an extensive set of statistical and texture parameters computed from these images. The procedure has been able to classify six classes of images (normal tissue and five glioma subtypes) and to distinguish between gliomas types from grades II to IV (with the highest sensitivity and specificity for grade II astrocytoma and grade III oligodendroglioma and very good scores in recognizing grade III anaplastic astrocytoma and grade IV glioblastoma). The procedure bolsters clinical diagnostic accuracy, offering a swift and reliable means of tumor characterization and grading, ultimately the enhancing treatment decision-making process.

5.
Biomater Adv ; 161: 213894, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38796956

RESUMO

Engineering of scaffolds for bone regeneration is often inspired by the native extracellular matrix mimicking its composite fibrous structure. In the present study, we used low loadings of diatomite earth (DE) biosilica to improve the bone regeneration potential of gelatin electrospun fibrillar microenvironments. We explored the effect of increasing the DE content from 1 % to 3 % and 5 %, respectively, on the physico-chemical properties of the fibrous scaffolds denoted FG_DE1, FG_DE3, FG_DE5, regarding the aqueous media affinity, stability under simulated physiological conditions, morphology characteristics, and local mechanical properties at the surface. The presence of biosilica generated composite structures with lower swelling degrees and higher stiffness when compared to gelatin fibers. Increasing DE content led to higher Young modulus, while the stability of the protein matrix in PBS, at 37 °C, over 21 was significantly decreased by the presence of diatomite loadings. The best preosteoblast response was obtained for FG_DE3, with enhanced mineralization during the osteogenic differentiation when compared to the control sample without diatomite. 5 % DE in FG_DE5 proved to negatively influence cells' metabolic activity and morphology. Hence, the obtained composite microfibrillar scaffolds might find application as osteoblast-responsive materials for bone tissue engineering.


Assuntos
Gelatina , Osteoblastos , Engenharia Tecidual , Alicerces Teciduais , Gelatina/química , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Animais , Terra de Diatomáceas/química , Osteogênese/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Camundongos , Regeneração Óssea/efeitos dos fármacos , Linhagem Celular , Microambiente Celular/efeitos dos fármacos , Microfibrilas/química , Microfibrilas/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Matriz Extracelular/efeitos dos fármacos
6.
Front Bioeng Biotechnol ; 11: 1273277, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38170069

RESUMO

The manipulation of biological materials at cellular level constitutes a sine qua non and provocative research area regarding the development of micro/nano-medicine. In this study, we report on 3D superparamagnetic microcage-like structures that, in conjunction with an externally applied static magnetic field, were highly efficient in entrapping cells. The microcage-like structures were fabricated using Laser Direct Writing via Two-Photon Polymerization (LDW via TPP) of IP-L780 biocompatible photopolymer/iron oxide superparamagnetic nanoparticles (MNPs) composite. The unique properties of LDW via TPP technique enabled the reproduction of the complex architecture of the 3D structures, with a very high accuracy i.e., about 90 nm lateral resolution. 3D hyperspectral microscopy was employed to investigate the structural and compositional characteristics of the microcage-like structures. Scanning Electron Microscopy coupled with Energy Dispersive X-Ray Spectroscopy was used to prove the unique features regarding the morphology and the functionality of the 3D structures seeded with MG-63 osteoblast-like cells. Comparative studies were made on microcage-like structures made of IP-L780 photopolymer alone (i.e., without superparamagnetic properties). We found that the cell-seeded structures made by IP-L780/MNPs composite actuated by static magnetic fields of 1.3 T were 13.66 ± 5.11 folds (p < 0.01) more efficient in terms of cells entrapment than the structures made by IP-L780 photopolymer alone (i.e., that could not be actuated magnetically). The unique 3D architecture of the microcage-like superparamagnetic structures and their actuation by external static magnetic fields acted in synergy for entrapping osteoblast-like cells, showing a significant potential for bone tissue engineering applications.

7.
Sci Rep ; 13(1): 14878, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689817

RESUMO

New therapeutic approaches are needed for the management of the highly chemo- and radioresistant chondrosarcoma (CHS). In this work, we used polyethylene glycol-encapsulated iron oxide nanoparticles for the intracellular delivery of the chemotherapeutic doxorubicin (IONPDOX) to augment the cytotoxic effects of carbon ions in comparison to photon radiation therapy. The in vitro biological effects were investigated in SW1353 chondrosarcoma cells focusing on the following parameters: cell survival using clonogenic test, detection of micronuclei (MN) by cytokinesis blocked micronucleus assay and morphology together with spectral fingerprints of nuclei using enhanced dark-field microscopy (EDFM) assembled with a hyperspectral imaging (HI) module. The combination of IONPDOX with ion carbon or photon irradiation increased the lethal effects of irradiation alone in correlation with the induction of MN. Alterations in the hyperspectral images and spectral profiles of nuclei reflected the CHS cell biological modifications following the treatments, highlighting possible new spectroscopic markers of cancer therapy effects. These outcomes showed that the proposed combined treatment is promising in improving CHS radiotherapy.


Assuntos
Neoplasias Ósseas , Condrossarcoma , Humanos , Íons , Biomarcadores , Carbono , Condrossarcoma/radioterapia , Doxorrubicina
8.
Biomed Opt Express ; 14(6): 2796-2810, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37342715

RESUMO

We present a method that integrates the standard imaging tools for locating and detecting unlabeled nanoparticles (NPs) with computational tools for partitioning cell volumes and NPs counting within specified regions to evaluate their internal traffic. The method uses enhanced dark field CytoViva optical system and combines 3D reconstructions of double fluorescently labeled cells with hyperspectral images. The method allows the partitioning of each cell image into four regions: nucleus, cytoplasm, and two neighboring shells, as well as investigations across thin layers adjacent to the plasma membrane. MATLAB scripts were developed to process the images and to localize NPs in each region. Specific parameters were computed to assess the uptake efficiency: regional densities of NPs, flow densities, relative accumulation indices, and uptake ratios. The results of the method are in line with biochemical analyses. It was shown that a sort of saturation limit for intracellular NPs density is reached at high extracellular NPs concentrations. Higher NPs densities were found in the proximity of the plasma membranes. A decrease of the cell viability with increasing extracellular NPs concentration was observed and explained the negative correlation of the cell eccentricity with NPs number.

9.
Nanoscale ; 14(35): 12744-12756, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36000453

RESUMO

Using nanoparticles as carriers for drug delivery systems has become a widely applied strategy in therapeutics and diagnostics. However, the pattern of their intracellular distribution is yet to be clarified. Here we present an in vitro study on the incorporation of mesoporous silica nanoparticles conjugated with folate and loaded with a cytotoxic drug, Irinotecan. The nanoparticles count and distribution within the cell frame were evaluated by means of enhanced dark field microscopy combined with hyperspectral imagery and 3D reconstructions from double-labeled fluorescent samples. An original post-processing procedure was developed to emphasize the nanoparticles' localization in 3D reconstruction of cellular compartments. By these means, it has been shown that the conjugation of mesoporous silica nanoparticles with folate increases the efficiency of nanoparticles entering the cell and their preferential localization in the close vicinity of the nucleus. As revealed by metabolic viability assays, the nanoparticles functionalized with folate enhance the cytotoxic efficiency of Irinotecan.


Assuntos
Antineoplásicos , Nanopartículas , Portadores de Fármacos , Sistemas de Liberação de Medicamentos/métodos , Ácido Fólico , Células HeLa , Humanos , Irinotecano , Microscopia , Porosidade , Dióxido de Silício
10.
Appl Opt ; 50(18): 2892-8, 2011 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-21691352

RESUMO

We have investigated the dynamics of the record-erase process of holograms in photochromic glass using continuum Nd:YVO4 laser radiation (λ=532 nm). A bidimensional microgrid pattern was formed and visualized in photochromic glass, and its diffraction efficiency decay versus time (during reconstruction step) gave us information (D, Δn) about the diffusion process inside the material. The recording and reconstruction processes were carried out in an off-axis setup, and the images of the reconstructed object were recorded by a CCD camera. Measurements realized on reconstructed object images using holograms recorded at a different incident power laser have shown a two-stage process involved in silver atom kinetics.

11.
Appl Opt ; 50(20): 3589-97, 2011 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-21743570

RESUMO

This paper presents our method, which simultaneously combines automatic imaging, identification, and counting with the acquisition of morphological information for at least 1000 blood cells from several three-dimensional images of the same sample. We started with seeking parameters to differentiate between red blood cells that are similar but different with respect to their development stage, i.e., mature or immature. We highlight that these cells have different diffractive patterns with complementary central intensity distribution in a given plane along the propagation axis. We use the Fresnel approximation to simulate propagation through cells modeled as spheroid-shaped phase objects and to find the cell property that has the dominant influence on this behavior. Starting with images obtained in the reconstruction step of the digital holographic microscopy technique, we developed a code for automated simultaneous individual cell image separation, identification, and counting, even when the cells are partially overlapped on a slide, and accurate measuring of their morphological features. To find the centroids of each cell, we propose a method based on analytical functions applied at threshold intervals. Our procedure separates the mature from the immature red blood cells and from the white blood cells through a decision based on gradient and radius values.


Assuntos
Técnicas Citológicas , Holografia/métodos , Interpretação de Imagem Assistida por Computador/métodos , Reconhecimento Automatizado de Padrão/métodos , Algoritmos , Automação , Técnicas de Laboratório Clínico , Desenho de Equipamento , Eritrócitos/citologia , Humanos , Imageamento Tridimensional/métodos , Leucócitos/citologia , Microscopia/métodos
12.
Biomed Opt Express ; 12(4): 2519-2530, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33996245

RESUMO

Phase-derived parameters and time autocorrelation functions were used to analyze the behavior of murine B16 cells exposed to different amplitudes of electroporation pulses. Cells were observed using an off-axis digital holographic microscope equipped with a fast camera. Series of quantitative phase images of cells were reconstructed and further processed using MATLAB codes. Projected area, dry mass density, and entropy proved to be predictors for permeabilized cells that swell or collapse. Autocorrelation functions of phase fluctuations in different regions of the cell showed a good correlation with the local effectiveness of permeabilization.

13.
Opt Express ; 18(12): 12526-36, 2010 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-20588378

RESUMO

A naturally-inspired phase-only diffractive optical element with a circular symmetry given by a quasi-periodic structure of the phyllotaxis type is presented in this paper. It is generated starting with the characteristic parametric equations which are optimal for the golden angle interval. For some ideal geometrical parameters, the diffracted intensity distribution in near-field has a central closed ring with almost zero intensity inside. Its radius and intensity values depend on the geometry or non-binary phase distribution superposed onto the phyllotaxis geometry. Along propagation axis, the transverse diffraction patterns from the binary-phase diffractive structure exhibit a self-focusing behavior and a rotational motion.

14.
Materials (Basel) ; 12(17)2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484381

RESUMO

We reported on three-dimensional (3D) superparamagnetic scaffolds that enhanced the mineralization of magnetic nanoparticle-free osteoblast cells. The scaffolds were fabricated with submicronic resolution by laser direct writing via two photons polymerization of Ormocore/magnetic nanoparticles (MNPs) composites and possessed complex and reproducible architectures. MNPs with a diameter of 4.9 ± 1.5 nm and saturation magnetization of 30 emu/g were added to Ormocore, in concentrations of 0, 2 and 4 mg/mL. The homogenous distribution and the concentration of the MNPs from the unpolymerized Ormocore/MNPs composite were preserved after the photopolymerization process. The MNPs in the scaffolds retained their superparamagnetic behavior. The specific magnetizations of the scaffolds with 2 and 4 mg/mL MNPs concentrations were of 14 emu/g and 17 emu/g, respectively. The MNPs reduced the shrinkage of the structures from 80.2 ± 5.3% for scaffolds without MNPs to 20.7 ± 4.7% for scaffolds with 4 mg/mL MNPs. Osteoblast cells seeded on scaffolds exposed to static magnetic field of 1.3 T deformed the regular architecture of the scaffolds and evoked faster mineralization in comparison to unstimulated samples. Scaffolds deformation and extracellular matrix mineralization under static magnetic field (SMF) exposure increased with increasing MNPs concentration. The results are discussed in the frame of gradient magnetic fields of ~3 × 10-4 T/m generated by MNPs over the cells bodies.

15.
Nanomaterials (Basel) ; 10(1)2019 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-31881758

RESUMO

The paper deals with the preparation and characterisation of hydroalcoholic polyphenolic extract from Sambucus ebulus (SE) leaves that was further loaded into three-types of lipid vesicles: liposomes, transfersomes, and ethosomes, to improve its bioavailability and achieve an optimum pharmacological effect. For Sambucus ebulus L.-loaded lipid vesicles, the entrapment efficiency, particle size, polydispersity index and stability were determined. All prepared lipid vesicles showed a good entrapment efficiency, in the range of 75-85%, nanometric size, low polydispersity indexes, and good stability over three months at 4 °C. The in vitro polyphenols released from lipid vehicles demonstrated slower kinetics when compared to the free extract dissolution in phosphate buffer solution at pH 7.4. Either free SE extract or SE extract loaded into lipid vesicles demonstrated a cytoprotective effect, even at low concentration, 5 ug/mL, against hydrogen peroxide-induced toxicity on L-929 mouse fibroblasts' cell lines. However, the cytoprotective effect depended on the time of the cells pre-treatment with SE extract before exposure to a hydrogen peroxide solution of 50 mM concentration, requiring at least 12 h of pre-treatment with polyphenols with radical scavenging capacity.

16.
Biofabrication ; 10(2): 025009, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29327690

RESUMO

A major limitation of existing 3D implantable structures for bone tissue engineering is that most of the cells rapidly attach on the outer edges of the structure, restricting the cells penetration into the inner parts and causing the formation of a necrotic core. Furthermore, these structures generally possess a random spatial arrangement and do not preserve the isotropy on the whole volume. Here, we report on the fabrication and testing of an innovative 3D hierarchical, honeycomb-like structure (HS), with reproducible and isotropic arhitecture, that allows in 'volume' migration of osteoblasts. In particular, we demonstrate the possibility to control the 3D spatial cells growth inside these complex architectures by adjusting the free spaces inside the structures. The structures were made of vertical microtubes arranged in a mulitlayered configuration, fabricated via laser direct writing by two photons polymerization of the IP-L780 photopolymer. In vitro tests performed in MG-63 osteoblast-like cells demonstrated that the cells migration inside the 3D structures is conducted by the separation space between the microtubes layers. Specifically, for layers separation between 2 and 10 µm, the cells gradually penetrated between the microtubes. Furthermore, these structures induced the strongest cells osteogenic differentiation and mineralization, with ALP activity 1.5 times stronger, amount of calcified minerals 1.3 times higher and osteocalcin secretion increased by 2.3 times compared to the other structures. On the opposite, for layers separation less than 2 µm and above 10 µm, the cells were not able to make interconnections and exhibited poor mineralization ability.


Assuntos
Regeneração Óssea/fisiologia , Osteogênese/fisiologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Diferenciação Celular , Linhagem Celular Tumoral , Humanos , Osteoblastos/citologia , Osteocalcina/análise , Osteocalcina/metabolismo , Polimerização
17.
Biomed Opt Express ; 8(4): 2222-2234, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28736667

RESUMO

Changes in optical and shape-related characteristics of B16F10 cells after electroporation were investigated using digital holographic microscopy (DHM). Bipolar rectangular pulses specific for electrochemotherapy were used. Electroporation was performed in an "off-axis" DHM set-up without using exogenous markers. Two types of cell parameters were monitored seconds and minutes after pulse train application: parameters addressing a specifically defined area of the cell (refractive index and cell height) and global cell parameters (projected area, optical phase shift profile and dry mass). The biphasic behavior of cellular parameters was explained by water and mannitol dynamics through the electropermeabilized cell membrane.

18.
FEBS Open Bio ; 7(10): 1527-1538, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28979841

RESUMO

The cell refractive index has been proposed as a putative cancer biomarker of great potential, being correlated with cell content and morphology, cell division rate and membrane permeability. We used digital holographic microscopy to compare the refractive index and dry mass density of two B16 murine melanoma sublines of different metastatic potential. Using statistical methods, the distribution of phase shifts within the reconstructed quantitative phase images was analyzed by the method of bimodality coefficients. The observed correlation of refractive index, dry mass density and bimodality profile with the metastatic potential of the cells was validated by real time impedance-based assay and clonogenic tests. We suggest that the refractive index and bimodality analysis of quantitative phase image histograms could be developed as optical biomarkers useful in label-free detection and quantitative evaluation of cell metastatic potential.

19.
Mater Sci Eng C Mater Biol Appl ; 55: 61-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26117739

RESUMO

This work describes a versatile laser-based protocol for fabricating micro-patterned, electrically conductive titanium-polypyrrole/poly(lactic-co-glycolic)acid (Ti-PPy/PLGA) constructs for electrically stimulated (ES) osteogenesis. Ti supports were patterned using fs laser ablation in order to create high spatial resolution microstructures meant to provide mechanical resistance and physical cues for cell growth. Matrix Assisted Pulsed Laser Evaporation (MAPLE) was used to coat the patterned Ti supports with PPy/PLGA layers acting as biocompatible surfaces having chemical and electrical properties suitable for cell differentiation and mineralization. In vitro biological assays on osteoblast-like MG63 cells showed that the constructs maintained cell viability without cytotoxicity. At 24 h after cell seeding, electrical stimulation with currents of 200 µA was applied for 4 h. This treatment was shown to promote earlier onset of osteogenesis. More specifically, the alkaline phosphatase activity of the stimulated cultures reached the maximum before that of the non-stimulated ones, i.e. controls, indicating faster cell differentiation. Moreover, mineralization was found to occur at an earlier stage in the stimulated cultures, as compared to the controls, starting with Day 6 of cell culture. At later stages, calcium levels in the stimulated cultures were higher than those in control samples by about 70%, with Ca/P ratios similar to those of natural bone. In all, the laser-based protocol emerges as an efficient alternative to existing fabrication technologies.


Assuntos
Ácido Láctico/química , Ácido Láctico/farmacologia , Osteogênese/efeitos dos fármacos , Ácido Poliglicólico/química , Ácido Poliglicólico/farmacologia , Polímeros/química , Polímeros/farmacologia , Pirróis/química , Pirróis/farmacologia , Titânio/química , Titânio/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Osso e Ossos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Estimulação Elétrica/métodos , Humanos , Terapia a Laser/métodos , Osteoblastos/efeitos dos fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA