Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Integr Environ Assess Manag ; 16(5): 691-705, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32162779

RESUMO

During herbicide spray application, nontarget terrestrial plants (NTTPs) growing in the off-field area need to be protected from unacceptable effects of herbicide drift. The risk of such unintended effects is assessed in order to establish whether a particular use can be approved, possibly in combination with mitigation measures. In Europe, the risk of herbicide treatment to NTTPs is assessed on the basis of tier 2 studies done under controlled conditions in greenhouses. Following the concept of a tiered testing approach, higher tier field studies under more realistic conditions could be used to refine the risk assessment. No current guideline for conducting higher tier NTTP field studies is available. We developed an NTTP higher tier field study method done on an experimental plant community established by sowing of a seed mixture. The setup was optimized in 3 pilot field studies and subsequently used for a definitive study testing effects of the herbicide iofensulfuron-sodium. Results show that the method can be regarded as a suitable higher tier option for assessing effects of herbicides on NTTPs. Growth of species from the soil seed bank cannot be avoided and has to be carefully considered when evaluating results. Adaptations of the study design may be necessary when testing different herbicides. Community-level endpoints were at the same level as single-species endpoints. Results of the field study were compared to standard greenhouse study results for the same herbicide. No observed effect rates (NOERs) in the field were about a factor of 10 higher and show that the current tier 2 risk assessment for NTTPs can be regarded as protective in this case. Whether the present field study design and the assessed endpoints can be used in higher tier risk assessment of NTTPs depends on selection of the specific protection goal and requires further discussion. Integr Environ Assess Manag 2020;16:691-705. © 2020 Bayer AG. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Herbicidas , Plantas , Medição de Risco , Ecotoxicologia , Europa (Continente) , Herbicidas/análise , Herbicidas/toxicidade
2.
PLoS One ; 15(3): e0230012, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32168318

RESUMO

Plants located adjacent to agricultural fields are important for maintaining biodiversity in semi-natural landscapes. To avoid undesired impacts on these plants due to herbicide application on the arable fields, regulatory risk assessments are conducted prior to registration to ensure proposed uses of plant protection products do not present an unacceptable risk. The current risk assessment approach for these non-target terrestrial plants (NTTPs) examines impacts at the individual-level as a surrogate approach for protecting the plant community due to the inherent difficulties of directly assessing population or community level impacts. However, modelling approaches are suitable higher tier tools to upscale individual-level effects to community level. IBC-grass is a sophisticated plant community model, which has already been applied in several studies. However, as it is a console application software, it was not deemed sufficiently user-friendly for risk managers and assessors to be conveniently operated without prior expertise in ecological models. Here, we present a user-friendly and open source graphical user interface (GUI) for the application of IBC-grass in regulatory herbicide risk assessment. It facilitates the use of the plant community model for predicting long-term impacts of herbicide applications on NTTP communities. The GUI offers two options to integrate herbicide impacts: (1) dose responses based on current standard experiments (acc. to testing guidelines) and (2) based on specific effect intensities. Both options represent suitable higher tier options for future risk assessments of NTTPs as well as for research on the ecological relevance of effects.


Assuntos
Gráficos por Computador , Herbicidas/toxicidade , Modelos Estatísticos , Medição de Risco/métodos , Interface Usuário-Computador , Monitoramento Ambiental
3.
Environ Sci Eur ; 30(1): 44, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524918

RESUMO

BACKGROUND: Semi-natural plant communities such as field boundaries play an important ecological role in agricultural landscapes, e.g., provision of refuge for plant and other species, food web support or habitat connectivity. To prevent undesired effects of herbicide applications on these communities and their structure, the registration and application are regulated by risk assessment schemes in many industrialized countries. Standardized individual-level greenhouse experiments are conducted on a selection of crop and wild plant species to characterize the effects of herbicide loads potentially reaching off-field areas on non-target plants. Uncertainties regarding the protectiveness of such approaches to risk assessment might be addressed by assessment factors that are often under discussion. As an alternative approach, plant community models can be used to predict potential effects on plant communities of interest based on extrapolation of the individual-level effects measured in the standardized greenhouse experiments. In this study, we analyzed the reliability and adequacy of the plant community model IBC-grass (individual-based plant community model for grasslands) by comparing model predictions with empirically measured effects at the plant community level. RESULTS: We showed that the effects predicted by the model IBC-grass were in accordance with the empirical data. Based on the species-specific dose responses (calculated from empirical effects in monocultures measured 4 weeks after application), the model was able to realistically predict short-term herbicide impacts on communities when compared to empirical data. CONCLUSION: The results presented in this study demonstrate an approach how the current standard greenhouse experiments-measuring herbicide impacts on individual-level-can be coupled with the model IBC-grass to estimate effects on plant community level. In this way, it can be used as a tool in ecological risk assessment.

4.
Environ Toxicol Chem ; 37(6): 1707-1722, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29480535

RESUMO

Current herbicide risk assessment guidelines for nontarget terrestrial plants require testing effects on young, vulnerable life stages (i.e., seedling emergence [and subsequent growth] and vegetative vigor [growth and dry wt]) but not directly on the reproduction of plants. However, the European Food Safety Authority (EFSA) has proposed that effects on reproduction might be considered when evaluating the potential effects on plants. We adapted the plant community model for grassland (IBC-grass) to give insight into the current debate on the sensitivity of reproductive versus vegetative endpoints in ecological risk assessment. In an extensive sensitivity analysis of this model, we compared plant attributes potentially affected by herbicides and the consequences for long-term plant population dynamics and plant diversity. This evaluation was implemented by reducing reproductive as well as vegetative endpoints by certain percentages (e.g., 10-90%) as a theoretical assumption. Plant mortality and seed sterility (i.e., inability of seeds to germinate) were the most sensitive attributes. Our results indicated that effects on seed production at off-field exposure rates must be very strong to have an impact on the risk assessment. Otherwise, effects on seed production are compensated for by the soil seed bank. The present study highlights the usefulness of community level modeling studies to support regulators in their decisions on the appropriate risk assessment endpoints and provides confidence in their assessments. Environ Toxicol Chem 2018;37:1707-1722. © 2018 SETAC.


Assuntos
Herbicidas/toxicidade , Plantas/efeitos dos fármacos , Ecologia , Poaceae , Reprodução/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/fisiologia , Sementes/efeitos dos fármacos , Sementes/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA